The area of the rectangle in standard form is
![x^(2) +9x+8](https://img.qammunity.org/2021/formulas/mathematics/college/9v32dtiwgkddl7ascihwber904rrhwvcdy.png)
Step-by-step explanation:
Given that the length of the rectangle is
![x+1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/sc05fc0ptmxj3vzw3r1ed0jp33ct3crkp0.png)
The width of the rectangle is
![x+8](https://img.qammunity.org/2021/formulas/mathematics/high-school/81xzuexjqk0os6o0gthl52qkpcd17fs4mq.png)
We need to determine the area of the rectangle.
The area of the rectangle can be determined using the formula,
![Area= length * width](https://img.qammunity.org/2021/formulas/mathematics/college/xtwfd29lhjcrdpe4a10mlfuy2esz3dqqqc.png)
Substituting the values of length and width in the formula, we get,
![Area= (x+1)(x+8)](https://img.qammunity.org/2021/formulas/mathematics/college/phro6whgvoysyws372i5jwge9w07r83yd3.png)
Multiplying the terms, we get,
![Area=x^(2) +8x+x+8](https://img.qammunity.org/2021/formulas/mathematics/college/iuoqsbgfj1s385500kuj9ek0rm5wwgyk66.png)
Adding the like terms, we have,
![Area=x^(2) +9x+8](https://img.qammunity.org/2021/formulas/mathematics/college/g2ilek8wnaolgacgira07zfzj0ydq7qvz8.png)
Thus, the area of the rectangle in standard form is
![x^(2) +9x+8](https://img.qammunity.org/2021/formulas/mathematics/college/9v32dtiwgkddl7ascihwber904rrhwvcdy.png)