138k views
1 vote
The temperature at a point (x,y,z) is given by T(x,y,z)=200e^-x^2-3y^-9z^2, where T measured in degrees Celsius and x,y,z in meters. Find the rate of change of temperature at the point P(2, -1, 2) in the direction toward the point (3, -3, 3)

User Eric Weiss
by
4.0k points

1 Answer

5 votes

Answer:

Therefore the rate change of temperature at the point P(2,-1,2) in the direction toward the point (3,-3,3) is
-(5200\sqrt6)/(3)e^(-43) °C/m.

Explanation:

Given that, the temperature at a point (x,y,z) is


T(x,y,z)=200e^(-x^2-3y^2-9z^2).

Rate change of temperature at the point P(2,-1,2) in the direction toward the point Q (3,-3,3) is
D_uT(2,-1,2)


T_x= 200(-2x)e^(-x^2-3y^2-9z^2)
=-400x200.2xe^(-x^2-3y^2-9z^2)


T_y = 200.(-6y)e^(-x^2-3y^2-9z^2)
=-1200ye^(-x^2-3y^2-9z^2)


T_z=200(-18z)e^(-x^2-3y^2-9z^2)
=-3600ze^(-x^2-3y^2-9z^2)

The gradient of the temperature


\bigtriangledown T(x,y,z)= (-400x200.2xe^(-x^2-3y^2-9z^2),-1200ye^(-x^2-3y^2-9z^2),-3600ze^(-x^2-3y^2-9z^2))
=-400e^(-x^2-3y^2-9z^2)(x,3y,9z)


\bigtriangledown T(2,-1,2) = -400e^(-2^2-3(-1)^2-9.2^2)(2,3.(-1),9.2)


=-400 e^(-43)(2,-3,18)

V=
\overrightarrow {PQ}= \vec{Q}-\vec{P}=(3,-3,3)-(2,-1,2)=(1,-2,1)

The unit vector of V is
((1,-2,1))/(√(1^2+(-2)^2+1^2))


=(1)/(\sqrt6)(1,-2,1)

Therefore,


D_uT(2,-1,2) = \bigtriangledown T(2,-1,2).(1)/(\sqrt6)(1,-2,1)


=-400 e^(-43)(2,-3,18).(1)/(\sqrt6)(1,-2,1)


=-(400)/(\sqrt6)e^(-43)(2.1+(-3).(-2)+18.1)


=-(10400)/(\sqrt6)e^(-43)


=-(5200\sqrt6)/(3)e^(-43) °C/m

Therefore the rate change of temperature at the point P(2,-1,2) in the direction toward the point (3,-3,3) is
-(5200\sqrt6)/(3)e^(-43) °C/m.

User Kevin Workman
by
4.7k points