35.1k views
5 votes
3. It is known that 80% of all college professors have doctoral degrees. If 10 professors are randomly selected, find the probability that a. five have a doctoral degree b. fewer than 4 have doctoral degrees. c. At least 6 have doctoral degrees. d. Between 5 and 7 (inclusive) have doctoral degrees. e. What is the expected number of college professors with doctoral degrees

1 Answer

2 votes

Answer:

a)
P(X=5)=(10C5)(0.8)^5 (1-0.8)^(10-5)=0.0264

b)
P(X<4) = P(X \leq 3) = P(X=0) +P(X=1) +P(X=2) +P(X=3)


P(X=0)=(10C0)(0.8)^0 (1-0.8)^(10-0)=1.024x10^(-7)


P(X=1)=(10C1)(0.8)^1 (1-0.8)^(10-1)=4.096x10^(-6)


P(X=2)=(10C2)(0.8)^2 (1-0.8)^(10-2)=7.37x10^(-5)


P(X=3)=(10C3)(0.8)^3 (1-0.8)^(10-3)=0.000786

And adding we got:


P(X<4) =0.000864

c)
P(X \geq 6) = 1-P(X<6) = 1-P(X\leq 5) =1-[P(X=0) +....+P(X=5)]


P(X=0)=(10C0)(0.8)^0 (1-0.8)^(10-0)=1.024x10^(-7)


P(X=1)=(10C1)(0.8)^1 (1-0.8)^(10-1)=4.096x10^(-6)


P(X=2)=(10C2)(0.8)^2 (1-0.8)^(10-2)=7.37x10^(-5)


P(X=3)=(10C3)(0.8)^3 (1-0.8)^(10-3)=0.000786


P(X=4)=(10C4)(0.8)^4 (1-0.8)^(10-4)=0.0055


P(X=5)=(10C5)(0.8)^5 (1-0.8)^(10-5)=0.0264

And replacing we got:


P(X \geq 6) = 1- 0.0328= 0.967

d)
P(5 \leq X \leq 7) = P(X=5) +P(X=6) +P(X=7)


P(X=5)=(10C5)(0.8)^5 (1-0.8)^(10-5)=0.0264


P(X=6)=(10C6)(0.8)^6 (1-0.8)^(10-6)=0.088


P(X=7)=(10C7)(0.8)^7 (1-0.8)^(10-7)=0.2013

And replacing we got:


P(5 \leq X \leq 7) = P(X=5) +P(X=6) +P(X=7)=0.0264 +0.088+0.2013=0.316

e)
E(X) = n*p = 10*0.8 =8

Explanation:

Previous concepts

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".

Solution to the problem

Let X the random variable of interest, on this case we now that:


X \sim Binom(n=10, p=0.8)

The probability mass function for the Binomial distribution is given as:


P(X)=(nCx)(p)^x (1-p)^(n-x)

Where (nCx) means combinatory and it's given by this formula:


nCx=(n!)/((n-x)! x!)

Part a

We want to find this probability:


P(X=5)

And using the pmf we got:


P(X=5)=(10C5)(0.8)^5 (1-0.8)^(10-5)=0.0264

Part b


P(X<4) = P(X \leq 3) = P(X=0) +P(X=1) +P(X=2) +P(X=3)


P(X=0)=(10C0)(0.8)^0 (1-0.8)^(10-0)=1.024x10^(-7)


P(X=1)=(10C1)(0.8)^1 (1-0.8)^(10-1)=4.096x10^(-6)


P(X=2)=(10C2)(0.8)^2 (1-0.8)^(10-2)=7.37x10^(-5)


P(X=3)=(10C3)(0.8)^3 (1-0.8)^(10-3)=0.000786

And adding we got:


P(X<4) =0.000864

Part c

For this case we can use the complement rule like this:


P(X \geq 6) = 1-P(X<6) = 1-P(X\leq 5) =1-[P(X=0) +....+P(X=5)]


P(X=0)=(10C0)(0.8)^0 (1-0.8)^(10-0)=1.024x10^(-7)


P(X=1)=(10C1)(0.8)^1 (1-0.8)^(10-1)=4.096x10^(-6)


P(X=2)=(10C2)(0.8)^2 (1-0.8)^(10-2)=7.37x10^(-5)


P(X=3)=(10C3)(0.8)^3 (1-0.8)^(10-3)=0.000786


P(X=4)=(10C4)(0.8)^4 (1-0.8)^(10-4)=0.0055


P(X=5)=(10C5)(0.8)^5 (1-0.8)^(10-5)=0.0264

And replacing we got:


P(X \geq 6) = 1- 0.0328= 0.967

Part d


P(5 \leq X \leq 7) = P(X=5) +P(X=6) +P(X=7)


P(X=5)=(10C5)(0.8)^5 (1-0.8)^(10-5)=0.0264


P(X=6)=(10C6)(0.8)^6 (1-0.8)^(10-6)=0.088


P(X=7)=(10C7)(0.8)^7 (1-0.8)^(10-7)=0.2013

And replacing we got:


P(5 \leq X \leq 7) = P(X=5) +P(X=6) +P(X=7)=0.0264 +0.088+0.2013=0.316

Part e

The expected number is given by:


E(X) = n*p = 10*0.8 =8

User Wiingaard
by
3.6k points