220k views
3 votes
Ixl geometry help pls !

Ixl geometry help pls !-example-1
User Btmills
by
4.4k points

2 Answers

2 votes


\bf ~\hspace{5em} \textit{ratio relations of two similar shapes} \\\\ \begin{array}{ccccllll} &\stackrel{\stackrel{ratio}{of~the}}{Sides}&\stackrel{\stackrel{ratio}{of~the}}{Areas}&\stackrel{\stackrel{ratio}{of~the}}{Volumes}\\ \cline{2-4}&\\ \cfrac{\stackrel{similar}{shape}}{\stackrel{similar}{shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array}~\hspace{6em} \cfrac{s}{s}=\cfrac{√(Area)}{√(Area)}=\cfrac{\sqrt[3]{Volume}}{\sqrt[3]{Volume}} \\\\[-0.35em] \rule{34em}{0.25pt}


\bf \cfrac{small}{large}\qquad \qquad \stackrel{sides}{\cfrac{3}{7}} ~~ = ~~ \stackrel{areas}{\sqrt{\cfrac{A_1}{98}}}\implies \left( \cfrac{3}{7} \right)^2 = \cfrac{A_1}{98}\implies \cfrac{3^2}{7^2}= \cfrac{A_1}{98} \\\\\\ \cfrac{9}{49}= \cfrac{A_1}{98}\implies 882 = 49A_1\implies \cfrac{882}{49}=A_1\implies 18=A_1

User Tydaeus
by
4.1k points
5 votes

Answer:

The answer to your question is 18 in²

Explanation:

Data

Big rectangle Small rectangle

Area = 98 in² Area = ?

Height = 7 in Height = 3 in

Process

1.- Calculate the base of the big rectangle

Area = base x height

solve for base

base = Area / height

substitution

base = 98 / 7

base = 14 ni

2.- Use proportions to find the base of the small rectangle

x / 3 = 14 / 7

Simplify

x = (14)(3) / 7

result

x = 6 in

3.- Calculate the area of the small rectangle

Area = 6 x 3

= 18 in²

User Referscus
by
4.5k points