73.0k views
5 votes
Simplify - write as a product - compute - 100 points

Simplify - write as a product - compute - 100 points-example-1
Simplify - write as a product - compute - 100 points-example-1
Simplify - write as a product - compute - 100 points-example-2
Simplify - write as a product - compute - 100 points-example-3

2 Answers

4 votes

Answer:

The answer I got was -1

User Amjad Shahzad
by
8.0k points
2 votes

Answer:

a)


\sqrt{61 - 24 √(5) } = - 4 + 3 √(5)

b)


( \sqrt{ ( {c}^(2) - 1) ({b}^(2) - 1) } - {2 √(bc) }) (\sqrt{ ( {c}^(2) - 1) ({b}^(2) - 1) } + {2 √(bc) } )

c)


\frac{ \sqrt{9 - 4 √(5) } }{2 - √(5) } = - 1

Explanation:

We want to simplify


\sqrt{61 - 24 √(5) }

Let :


\sqrt{61 - 24 √(5) } = a - b √(5)

Square both sides:


(\sqrt{61 - 24 √(5) } )^(2) = ({a - b √(5) })^(2)

Expand;


61 - 24 √(5) = {a}^(2) - 2ab √(5) + 5 {b}^(2)

Compare coefficient:


{a}^(2) + 5 {b}^(2) = 61 - - - (1)


- 24 = - 2ab \\ ab = 12 \\ b = (12)/(b) - - -( 2)

Solve simultaneously,


\frac{144}{ {b}^(2) } + 5 {b}^(2) = 61


5 {b}^(4) - 61 {b}^(2) + 144 = 0

Solve the quadratic equation in b²


{b}^(2) = 9 \: or \: {b}^(2) = (16)/(5)

This implies that:


b = \pm3 \: or \: b = \pm (4 √(5) )/(5)

When b=-3,


a = - 4

Therefore


\sqrt{61 - 24 √(5) } = - 4 + 3 √(5)

We want to rewrite as a product:


{b}^(2) {c}^(2) - 4bc - {b}^(2) - {c}^(2) + 1

as a product:

We rearrange to get:


{b}^(2) {c}^(2) - {b}^(2) - {c}^(2) + 1- 4bc

We factor to get:


{b}^(2) ( {c}^(2) - 1) - ({c}^(2) - 1)- 4bc

Factor again to get;


( {c}^(2) - 1) ({b}^(2) - 1)- 4bc

We rewrite as difference of two squares:


(\sqrt{( {c}^(2) - 1) ({b}^(2) - 1) })^(2) - ( {2 √(bc) })^(2)

We factor further to get;


( \sqrt{ ( {c}^(2) - 1) ({b}^(2) - 1) } - {2 √(bc) }) (\sqrt{ ( {c}^(2) - 1) ({b}^(2) - 1) } + {2 √(bc) } )

c) We want to compute:


\frac{ \sqrt{9 - 4 √(5) } }{2 - √(5) }

Let the numerator,


\sqrt{9 - 4 √(5) } = a - b √(5)

Square both sides;


9 - 4 √(5) = {a}^(2) - 2ab √(5) + 5 {b}^(2)

Compare coefficients;


{a}^(2) + 5 {b}^(2) = 9 - - - (1)

and


- 2ab = - 4 \\ ab = 2 \\ a = (2)/(b) - - - - (2)

Put equation (2) in (1) and solve;


\frac{4}{ {b}^(2) } + 5 {b}^(2) = 9


5 {b}^(4) - 9 {b}^(2) + 4 = 0


b = \pm1

When b=-1, a=-2

This means that:


\sqrt{9 - 4 √(5) } = - 2 + √(5)

This implies that:


\frac{ \sqrt{9 - 4 √(5) } }{2 - √(5) } = ( - 2 + √(5) )/(2 - √(5) ) = ( - (2 - √(5)) )/(2 - √(5) ) = - 1

User Amos Egel
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories