73.0k views
5 votes
Simplify - write as a product - compute - 100 points

Simplify - write as a product - compute - 100 points-example-1
Simplify - write as a product - compute - 100 points-example-1
Simplify - write as a product - compute - 100 points-example-2
Simplify - write as a product - compute - 100 points-example-3

2 Answers

4 votes

Answer:

The answer I got was -1

User Amjad Shahzad
by
4.1k points
2 votes

Answer:

a)


\sqrt{61 - 24 √(5) } = - 4 + 3 √(5)

b)


( \sqrt{ ( {c}^(2) - 1) ({b}^(2) - 1) } - {2 √(bc) }) (\sqrt{ ( {c}^(2) - 1) ({b}^(2) - 1) } + {2 √(bc) } )

c)


\frac{ \sqrt{9 - 4 √(5) } }{2 - √(5) } = - 1

Explanation:

We want to simplify


\sqrt{61 - 24 √(5) }

Let :


\sqrt{61 - 24 √(5) } = a - b √(5)

Square both sides:


(\sqrt{61 - 24 √(5) } )^(2) = ({a - b √(5) })^(2)

Expand;


61 - 24 √(5) = {a}^(2) - 2ab √(5) + 5 {b}^(2)

Compare coefficient:


{a}^(2) + 5 {b}^(2) = 61 - - - (1)


- 24 = - 2ab \\ ab = 12 \\ b = (12)/(b) - - -( 2)

Solve simultaneously,


\frac{144}{ {b}^(2) } + 5 {b}^(2) = 61


5 {b}^(4) - 61 {b}^(2) + 144 = 0

Solve the quadratic equation in b²


{b}^(2) = 9 \: or \: {b}^(2) = (16)/(5)

This implies that:


b = \pm3 \: or \: b = \pm (4 √(5) )/(5)

When b=-3,


a = - 4

Therefore


\sqrt{61 - 24 √(5) } = - 4 + 3 √(5)

We want to rewrite as a product:


{b}^(2) {c}^(2) - 4bc - {b}^(2) - {c}^(2) + 1

as a product:

We rearrange to get:


{b}^(2) {c}^(2) - {b}^(2) - {c}^(2) + 1- 4bc

We factor to get:


{b}^(2) ( {c}^(2) - 1) - ({c}^(2) - 1)- 4bc

Factor again to get;


( {c}^(2) - 1) ({b}^(2) - 1)- 4bc

We rewrite as difference of two squares:


(\sqrt{( {c}^(2) - 1) ({b}^(2) - 1) })^(2) - ( {2 √(bc) })^(2)

We factor further to get;


( \sqrt{ ( {c}^(2) - 1) ({b}^(2) - 1) } - {2 √(bc) }) (\sqrt{ ( {c}^(2) - 1) ({b}^(2) - 1) } + {2 √(bc) } )

c) We want to compute:


\frac{ \sqrt{9 - 4 √(5) } }{2 - √(5) }

Let the numerator,


\sqrt{9 - 4 √(5) } = a - b √(5)

Square both sides;


9 - 4 √(5) = {a}^(2) - 2ab √(5) + 5 {b}^(2)

Compare coefficients;


{a}^(2) + 5 {b}^(2) = 9 - - - (1)

and


- 2ab = - 4 \\ ab = 2 \\ a = (2)/(b) - - - - (2)

Put equation (2) in (1) and solve;


\frac{4}{ {b}^(2) } + 5 {b}^(2) = 9


5 {b}^(4) - 9 {b}^(2) + 4 = 0


b = \pm1

When b=-1, a=-2

This means that:


\sqrt{9 - 4 √(5) } = - 2 + √(5)

This implies that:


\frac{ \sqrt{9 - 4 √(5) } }{2 - √(5) } = ( - 2 + √(5) )/(2 - √(5) ) = ( - (2 - √(5)) )/(2 - √(5) ) = - 1

User Amos Egel
by
3.9k points