53.2k views
1 vote
Find sec 2Theta in exact value

Find sec 2Theta in exact value-example-1

1 Answer

6 votes

Answer:


sec(2\theta)=-(5)/(4)

Explanation:

we know that

step 1

Find
cos(\theta)

we know that


tan^2(\theta)+1=sec^2(\theta)

we have


tan(\theta)=3

substitute


3^2+1=sec^2(\theta)


sec^2(\theta)=10


sec(\theta)=\pm√(10)

Remember that

Angle theta lie in Quadrant I

so


sec(\theta) is positive


sec(\theta)=√(10)

Remember that


sec(\theta)=(1)/(cos(\theta))

therefore


cos(\theta)=(1)/(√(10))

step 2

Find
sin(\theta)

we know that


tan(\theta)=(sin(\theta))/(cos(\theta))


sin(\theta)=tan(\theta)cos(\theta)

we have


cos(\theta)=(1)/(√(10))


tan(\theta)=3

substitute


sin(\theta)=(3)((1)/(√(10)))


sin(\theta)=(3)/(√(10))

step 3

Find
cos(2\theta)

we know that


cos(2\theta)=2cos^2(\theta)-1

we have


cos(\theta)=(1)/(√(10))

substitute


cos(2\theta)=2((1)/(√(10)))^2-1


cos(2\theta)=(1)/(5)-1


cos(2\theta)=-(4)/(5)

Remember that


sec(2\theta)=(1)/(cos(2\theta))

therefore


sec(2\theta)=-(5)/(4)

User Ben Kouba
by
4.7k points