Answer:
See below for answers and explanations
Explanation:
Problem 1
Recall that the projection of a vector
onto
is
.
Identify the vectors:
![u=\langle-10,-7\rangle](https://img.qammunity.org/2023/formulas/mathematics/college/9bdsn4bei3ma2ttofgj6porecnkk246wn5.png)
![v=\langle-8,4\rangle](https://img.qammunity.org/2023/formulas/mathematics/college/17co94sq7tel269uou5yaszghxl7i01crj.png)
Compute the dot product:
![u\cdot v=(-10*-8)+(-7*4)=80+(-28)=52](https://img.qammunity.org/2023/formulas/mathematics/college/fllslgevixhgc9qfrvh11ze4oxfqd0vvp1.png)
Find the square of the magnitude of vector v:
![||v||^2=√((-8)^2+(4)^2)^2=64+16=80](https://img.qammunity.org/2023/formulas/mathematics/college/ocil13ed28ax12cd45fcrm1hxpep93b98f.png)
Find the projection of vector u onto v:
![\displaystyle proj_vu=\biggr((u\cdot v)/(||v||^2)\biggr)v\\\\proj_vu=\biggr((52)/(80)\biggr)\langle-8,4\rangle\\\\proj_vu=\biggr\langle(-416)/(80) ,(208)/(80)\biggr\rangle\\\\proj_vu=\biggr\langle(-26)/(5) ,(13)/(5)\biggr\rangle\\\\proj_vu=\langle-5.2,2.6\rangle](https://img.qammunity.org/2023/formulas/mathematics/college/ciof2cc3eriq2r6qcp3gcwtnizdtxw484m.png)
Thus, B is the correct answer
Problem 2
Treat the football and wind as vectors:
Football:
![u=\langle42\cos172^\circ,42\sin172^\circ\rangle](https://img.qammunity.org/2023/formulas/mathematics/college/8dexwtozphhh4756zzdwr0sybsnwolyajp.png)
Wind:
![v=\langle13\cos345^\circ,13\sin345^\circ\rangle](https://img.qammunity.org/2023/formulas/mathematics/college/d11hsjp4rblebw5yo290zxpj1di3bxlmua.png)
Add the vectors:
![u+v=\langle42\cos172^\circ+13\cos345^\circ,42\sin172^\circ+13\sin345^\circ\rangle\approx\langle-29.034,2.481\rangle](https://img.qammunity.org/2023/formulas/mathematics/college/t56p7ceapxp50hwkjmnsqg3qmru1fpl5bz.png)
Find the magnitude of the resultant vector:
![||u+v||=√((-29.034)^2+(2.481)^2)\approx29.14](https://img.qammunity.org/2023/formulas/mathematics/college/tedtdqs28y96ijuezy8w9n0hcy7xdpahn1.png)
Find the direction of the resultant vector:
![\displaystyle \theta=tan^(-1)\biggr((2.841)/(-29.034)\biggr)\approx -5^\circ](https://img.qammunity.org/2023/formulas/mathematics/college/4357jj3oxu3s3ru0h3f52os0zpx2e55ftg.png)
Because our resultant vector is in Quadrant II, the true direction angle is 6° clockwise from the negative axis. This means that our true direction angle is
![180^\circ-5^\circ=175^\circ](https://img.qammunity.org/2023/formulas/mathematics/college/jgzykgcvyw25w7h22awdfd7qxt2kg4gazo.png)
Thus, C is the correct answer
Problem 3
We identify the initial point to be
and the terminal point to be
. The vector in component form can be found by subtracting the initial point from the terminal point:
![v=\langle-7-(-2),6-12\rangle=\langle-7+2,-6\rangle=\langle-5,-6\rangle](https://img.qammunity.org/2023/formulas/mathematics/college/13hoqimb77ucayrnywgcgl0ghslxp4zbsf.png)
Next, we find the magnitude of the vector:
![||v||=√((-5)^2+(-6)^2)=√(25+36)=√(61)\approx7.81](https://img.qammunity.org/2023/formulas/mathematics/college/9d7zg188twf0f5zfxcks7la6k7izkdekxb.png)
And finally, we find the direction of the vector:
![\displaystyle \theta=tan^(-1)\biggr((6)/(5)\biggr)\approx50.194^\circ](https://img.qammunity.org/2023/formulas/mathematics/college/q025dwv803h4xvgtx9jtlt4t18a6a6lp8j.png)
Keep in mind that since our vector is in Quadrant III, our direction angle also needs to be in Quadrant III, so the true direction angle is
.
Thus, A is the correct answer
Problem 4
Add the vectors:
![v_1+v_2=\langle-60,3\rangle+\langle4,14\rangle=\langle-60+4,3+14\rangle=\langle-56,17\rangle](https://img.qammunity.org/2023/formulas/mathematics/college/eyvp1dinod9b44338dfcwan067eczj4fsv.png)
Determine the magnitude of the vector:
![||v_1+v_2||=√((-56)^2+(17)^2)=√(3136+289)=√(3425)\approx58.524](https://img.qammunity.org/2023/formulas/mathematics/college/d0on2h8s497x7p60pdv2gbgvlrzczbhjzg.png)
Find the direction of the vector:
![\displaystyle\theta=tan^(-1)\biggr((17)/(-56) \biggr)\approx-17^\circ](https://img.qammunity.org/2023/formulas/mathematics/college/owv64wbi0xnkwai7uxsjmk1z8bsb51l47l.png)
Because our vector is in Quadrant II, then the direction angle we found is a reference angle, telling us the true direction angle is 17° clockwise from the negative x-axis, so the true direction angle is
![180^\circ-17^\circ=163^\circ](https://img.qammunity.org/2023/formulas/mathematics/college/aafc3h25r98pphfhabktj1kcuh47kbruqk.png)
Thus, A is the correct answer
Problem 5
A vector in trigonometric form is represented as
where
is the magnitude of vector
and
is the direction of vector
.
Magnitude:
![||w||=√((-16)^2+(-63)^2)=√(256+3969)=√(4225)=65](https://img.qammunity.org/2023/formulas/mathematics/college/reyevn3s83gedszprglj5ja10c5auj5s6k.png)
Direction:
![\displaystyle \theta=tan^(-1)\biggr((-63)/(-16)\biggr)\approx75.75^\circ](https://img.qammunity.org/2023/formulas/mathematics/college/8teohzk0mnvv4i71jukbl2vbhqzfy99u2c.png)
As our vector is in Quadrant III, our true direction angle will be 75.75° counterclockwise from the negative x-axis, so our true direction angle will be
.
This means that our vector in trigonometric form is
![w=65(\cos255.75^\circ i+\sin255.75^\circ j)](https://img.qammunity.org/2023/formulas/mathematics/college/v1ass4g1gpvdpzrfgdhv6psjjzpfulpi2j.png)
Thus, C is the correct answer
Problem 6
Write the vectors in trigonometric form:
![u=\langle40\cos30^\circ,40\sin30^\circ\rangle\\v=\langle50\cos140^\circ,50\sin140^\circ\rangle](https://img.qammunity.org/2023/formulas/mathematics/college/nodrl2buhha99cr9w0bcqs1eev1uuvf48z.png)
Add the vectors:
![u+v=\langle40\cos30^\circ+50\cos140^\circ,40\sin30^\circ+50\sin140^\circ\rangle\approx\langle-3.661,52.139\rangle](https://img.qammunity.org/2023/formulas/mathematics/college/nl69ya89lm7mawljm221b3bi1b8rs2cvj6.png)
Find the magnitude of the resultant vector:
![||u+v||=√(3.661^2+52.139^2)\approx52.268](https://img.qammunity.org/2023/formulas/mathematics/college/wunmvw6xf26363mp2gqq8nqv3q22dcn8dn.png)
Find the direction of the resultant vector:
![\displaystyle\theta=tan^(-1)\biggr((52.139)/(-3.661) \biggr)\approx-86^\circ](https://img.qammunity.org/2023/formulas/mathematics/college/6bq4rl6ifx5xmdwz63boezug47k3ikpyzr.png)
Because our resultant vector is in Quadrant II, then our true direction angle will be 86° clockwise from the negative x-axis. So, our true direction angle is
.
Thus, B is the correct answer