Answer:
p(n)=(5n+1)^2 – (2n–1)^2=
(5n)^2 +2*(5n)*1+1^2-((2n)^2 - 2*(2n)*1+1^2)=
25n^2+10n+1-(4n^2-4n+1)=
25n^2+10n+1-4n^2+4n-1=
21n^2+14n=
7*(3n^2+2n)
7 divides p(n)=7*(3n^2+2n) for each n!
4.3m questions
5.6m answers