226k views
3 votes
A triangle has vertices P(2,−1,0),Q(4,1,1),R(4,−5,4). Determine if the triangle is a right triangle (a) Using the Pythagorean theorem; (b) Using the properties of the dot product.

User Veger
by
7.6k points

1 Answer

3 votes

Answer:

see answers below

Explanation:

a) using the Pythagorean theorem

PQ= (2,−1,0) - (4,1,1) = (-2,-2,-1)

QR= (4,1,1) - (4,−5,4) = (0,6,-3)

RP= (4,−5,4) - (2,−1,0) = (2,-4,4)

then

length 1 = |PQ| = √[(-2)²+(-2)²+(-1)²]= √9 = 3

length 2 = |QR| = √[(0)²+(6)²+(-3)²]= √45

length 3 = |RP| = √[(2)²+(-4)²+(-4)²]= √36 = 6

then if the triangle is a right triangle

length 2 = √[(length 1)²+ (length 3)²] = √(3²+6²) = √45

then our assumption is correct

b) using the properties of dot product

PQ * RP = (-2,-2,-1) * (2,-4,4) = 2*(-2) + (-2)*(-4) + (-1)*4 = -4 + 8 - 4 = 0

thus PQ is perpendicular to RP . Then the triangle PQR is a right one

User Diego Avila
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories