Answer:
Approximation f(25.3)=5.03 (real value=5.0299)
The approximation can be written as f(x)=0.1x+2.5
Explanation:
We have to approximate
with a linear function.
To approximate a function, we can use the Taylor series.
![f(x)=\sum_1^(\infty) (f^((n))(a))/(n!)(x-a)^n](https://img.qammunity.org/2021/formulas/mathematics/college/lz8u24zqaekiv47j11p1yy831whgevdxb7.png)
The point a should be a point where the value of f(a) is known or easy to calculate.
In this case, the appropiate value for a is a=25.
Then we calculate the Taylor series with a number of terms needed to make a linear estimation.
![f(x)\approx f(a)+(f'(a))/(1!)(x-a)](https://img.qammunity.org/2021/formulas/mathematics/college/w1ron4p2ts1c6zy0ailydhl8aj6e57okot.png)
The value of f'(a) needs the first derivate:
![f'(x)=(1)/(2√(x))\\\\f'(a)=f'(25)=(1)/(2√(25))=(1)/(2*5)=(1)/(10)](https://img.qammunity.org/2021/formulas/mathematics/college/7hgm4hawbndn7dqzmd6qf616jvsdta1kum.png)
Then
![f(x)\approx f(25)+(1)/(10)(x-25)=√(25) +(1)/(10)(x-25)\\\\f(x)\approx 5+(1)/(10)(x-25)](https://img.qammunity.org/2021/formulas/mathematics/college/1pa4pq7d9xes8rlk73n7ryojkjqma6v7ez.png)
We evaluate for x=25.3
![f(25.3)\approx 5+(1)/(10)(25.3-25)\\\\f(25.3)\approx 5+(1)/(10)(0.3)=5.03](https://img.qammunity.org/2021/formulas/mathematics/college/duz8473zc7nqqqf2vcrnw1hg9zgvz23due.png)
If we rearrange the approximation to be in the form mx+b we have:
![f(x)\approx 5+(1)/(10)(x-25)=5+0.1x-2.5\\\\f(x)\approx 0.1x+2.5](https://img.qammunity.org/2021/formulas/mathematics/college/80l69pg8n0s2ffxeivhdloxy9of312f2sv.png)
Then, m=0.1 and b=2.5.