Answer:
a. V1 = -0.227m/s (negative sign denotes that the direction is towards left)
b. V2 = 0.453m/s
Step-by-step explanation:
Given
M1 = Mass of Block 1= 20g --- Convert to Kilograms
M1 = 0.02kg
U1 = Initial Velocity of Block 1 = 0.68m/s
M2 = Mass of Block 2 = 40g, --- Convert to Kilograms
M2 = 0.04kg
U2 = Initial Velocity of Block 2 = 0m/s
V1 = Final Velocity of Block 1
V2 = Final Velocity of Block 2
a.
Using Conversation of Linear Momentum
M1U1 + M2U2 = M1V1 + M2V2 --- (U2 = 0)
So,
M1U1 = M1V1 + M2V2
M1U1 - M1V1 = M2V2
M1(U1 - V1) = M2V2 ----- (1)
Since kinetic energy is conserved in elastic collision:
½M1U1² + ½M2U2² = ½M1V1² + ½M2V2² ---- U2 = 0
½M1U1² = ½M1V1² + ½M2V2²
M1U1² = M1V1² + M2V2²
M1U1² - M1V1² = M2V2²
M1(U1² - V1²) = M2V2² ----- (2)
Divide (2) by (1)
M1(U1² - V1²)/M1(U1 - V1) = M2V2²/M2V2
(U1² - V1²)/(U1-V1) = V2
(U1 - V1)(U1 + V1)/(U1-V1) = V2
U1 + V1 = V2 -----(3)
Substitute U1 + V1 for V2 in (1)
M1(U1 - V1) = M2(U1 + V1)
Substitute each values
0.02(0.68 - V1) = 0.04(0.68 + V1)
0.0136 - 0.02V1 = 0.0272 + 0.04V1
0.0136 - 0.0272 = 0.04V1 + 0.02V1
−0.0136 = 0.06V1
V1 = -0.0136/0.06
V1 = −0.22666666666666
V1 = -0.227m/s
b.
From (3), U1 + V1 = V2
V1 = V2 - U1 --- substitute in (1)
M1(U1 - V2 + U1) = M2V2
M1(2U1 - V2) = M2V2
2M1U1 - M1V2 = M2V2
2M1U1 = M2V2 + M1V2
2M1U1 = (M2 + M1)V2
V2 = 2M1U1/(M2 + M1)
V2 = (2*0.02*0.68)/(0.04+0.02)
V2 = 0.453333333333333
V2 = 0.453m/s