Answer: The number of different possible outcomes of 1 size, 1 crust and 1 pizza topping that Tom can buy from 5 sizes, 4 types of crust and 12 pizza toppings is 240 OUTCOMES OR SELECTIONS
Explanation:
Since Tom can select 1 size from 5 different sizes,
he can select 1 type of crust from 4 types
he can select 1 pizza topping from 12 pizza toppings;
We can obtain the number of different possible outcomes of 1 size, 1 crust and 1 topping that Tom can buy by multiplying the different combinations of sizes, types and toppings.
Now, if he can select one size from 5 sizes, the combination will be;
5c1 = (5p1)/1!
= 5!/[(5-1)1!]
= 5*4*3*2*1/[(4*3*2*1)*1]
= 120/24
= 5
If he can select one crust type from 4 available types, the combination will be=
4c1 = 4P1/1!
= 4!/(4-1)!
= 4!/3!
= 4
If Tom can also select one pizza topping from 12 pizza toppings, the combination will be =
12c = 12p1/1!
= 12!/(12-1)!
= 12!/11!
= 12
Multiplying the different combinations to determine the number of different possible outcomes of 1 size, 1 crust and 1 pizza topping that Tom can buy:
= 5c1 × 4c1 × 12c1
= 5 × 4 × 12
= 240 selections