112k views
2 votes
Which is the solution set of the inequality
-15y+9<-36

Which is the solution set of the inequality -15y+9<-36-example-1
User Adocad
by
3.4k points

1 Answer

4 votes

Answer:


-15y+9<-36\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:y>3\:\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(3,\:\infty \:\right)\end{bmatrix}

Therefore, the first choice is correct.

The graph of the inequality is also attached below.

Explanation:

Considering the inequality


-15y+9<-36

solving


-15y+9<-36


\mathrm{Subtract\:}9\mathrm{\:from\:both\:sides}


-15y+9-9<-36-9


-15y<-45


\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}


\left(-15y\right)\left(-1\right)>\left(-45\right)\left(-1\right)


15y>45


\mathrm{Divide\:both\:sides\:by\:}15


(15y)/(15)>(45)/(15)


y>3

In other words,


-15y+9<-36\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:y>3\:\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(3,\:\infty \:\right)\end{bmatrix}

Therefore, the first choice is correct.

The graph of the inequality is also attached below.

Which is the solution set of the inequality -15y+9<-36-example-1
User Abdullah Rasheed
by
3.4k points