49.5k views
2 votes
Prove the identity.
secx- cos x = sin x tan x

1 Answer

4 votes

Answer:

LHS = RHS

Explanation:


\sec(x) - \cos(x) \\ = (1)/( \cos(x) ) - \cos(x) \\ = \frac{1 - { \cos(x) }^(2) }{ \cos(x) }

Since


{ \sin(x) }^(2) + { \cos(x) }^(2) = 1 \\ 1 - { \cos(x) }^(2) = { \sin(x) }^(2)

Therefore,


\frac{1 - \ { \cos(x) }^(2) }{ \cos(x) } \\ = \frac{ { \sin(x) }^(2) }{ \cos(x) } \\ = ( \sin(x ) * \sin(x) )/( \cos(x) ) \\ = \sin(x) \tan(x)

Therefore LHS = RHS

User Shahabvshahabi
by
5.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.