88.9k views
0 votes
Angle α lies in quadrant II , and tanα=−125 . Angle β lies in quadrant IV , and cosβ=35 .

What is the exact value of cos(α−β) ?

User Dekryptid
by
5.5k points

1 Answer

7 votes

Answer:


cos(\alpha+\beta)=(33)/(65)

Explanation:

step 1

Find cos α

we know that


tan^2(\alpha)+1=sec^2(\alpha)

we have


tan(\alpha)=-(12)/(5)

substitute


(-(12)/(5))^2+1=sec^2(\alpha)


sec^2(\alpha)=(144)/(25)+1


sec^2(\alpha)=(169)/(25)


sec(\alpha)=\pm(13)/(5)

Remember that Angle α lies in quadrant II

so

sec α is negative


sec(\alpha)=-(13)/(5)

Find the value of cos α


cos)\alpha)=(1)/(sec(\alpha))

so


cos(\alpha)=-(5)/(13)

step 2

Find sin α

we know that


tan(\alpha)=(sin(\alpha))/(cos(\alpha))


sin(\alpha)=tan(\alpha)cos(\alpha)

we have


tan(\alpha)=-(12)/(5)


cos(\alpha)=-(5)/(13)

substitute


sin(\alpha)=(-(12)/(5))(-(5)/(13))


sin(\alpha)=(12)/(13)

step 3

Find sin β

we know that


sin^2(\beta)+cos^2(\beta)=1

we have


cos(\beta)=(3)/(5)

substitute


sin^2(\beta)+((3)/(5))^2=1


sin^2(\beta)=1-((3)/(5))^2


sin^2(\beta)=1-(9)/(25)


sin^2(\beta)=(16)/(25)


sin(\beta)=\pm(4)/(5)

Remember that

Angle β lies in quadrant IV

so

sin β is negative


sin(\beta)=-(4)/(5)

step 4

Find cos(α−β)

we know that


cos(\alpha+\beta)=cos(\alpha)cos(\beta)-sin(\alpha)sin(\beta)

we have


cos(\alpha)=-(5)/(13)


cos(\beta)=(3)/(5)


sin(\alpha)=(12)/(13)


sin(\beta)=-(4)/(5)

substitute the given values


cos(\alpha+\beta)=(-(5)/(13))((3)/(5))-((12)/(13))(-(4)/(5))


cos(\alpha+\beta)=(-(15)/(65))+((48)/(65))


cos(\alpha+\beta)=(33)/(65)

User SteveDJ
by
5.5k points