Answer:
![cos(\alpha+\beta)=(33)/(65)](https://img.qammunity.org/2021/formulas/mathematics/high-school/retaj26zed3px0buw06f2bgnd5lfc4q4mz.png)
Explanation:
step 1
Find cos α
we know that
![tan^2(\alpha)+1=sec^2(\alpha)](https://img.qammunity.org/2021/formulas/mathematics/high-school/cr35wkgivuvnmhh2zgv10alq8hk99ku9of.png)
we have
![tan(\alpha)=-(12)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/o84m3ip1hru7t6n9mh0rbuqijhasa54glq.png)
substitute
![(-(12)/(5))^2+1=sec^2(\alpha)](https://img.qammunity.org/2021/formulas/mathematics/high-school/dm3ngmfkagqmlubn9w6j3pkzzba8oh6i7a.png)
![sec^2(\alpha)=(144)/(25)+1](https://img.qammunity.org/2021/formulas/mathematics/high-school/ecf43wdik25x6pmrrzf8npnioniiznhj12.png)
![sec^2(\alpha)=(169)/(25)](https://img.qammunity.org/2021/formulas/mathematics/high-school/cskeq96kigq9ilugg3khobu5i31mxhr0a1.png)
![sec(\alpha)=\pm(13)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/tj58wyuxt2mv308cwyofoxh4g9sfonq1kl.png)
Remember that Angle α lies in quadrant II
so
sec α is negative
![sec(\alpha)=-(13)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/frok7ahca06t32xkbbjx63pj2wnxi18qnv.png)
Find the value of cos α
![cos)\alpha)=(1)/(sec(\alpha))](https://img.qammunity.org/2021/formulas/mathematics/high-school/w9dy3pjntnw3rmg1dk4si29mpuy7zwzaii.png)
so
![cos(\alpha)=-(5)/(13)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8q5xz3s0ub993dmwtlvgjiu9mmvwpdwfgy.png)
step 2
Find sin α
we know that
![tan(\alpha)=(sin(\alpha))/(cos(\alpha))](https://img.qammunity.org/2021/formulas/mathematics/high-school/k8xuucknzebw8hpazwvo24nglaaa2nlbi3.png)
![sin(\alpha)=tan(\alpha)cos(\alpha)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9fql1vdufski13dsohcddoplbtfc54cclh.png)
we have
![tan(\alpha)=-(12)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/o84m3ip1hru7t6n9mh0rbuqijhasa54glq.png)
![cos(\alpha)=-(5)/(13)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8q5xz3s0ub993dmwtlvgjiu9mmvwpdwfgy.png)
substitute
![sin(\alpha)=(-(12)/(5))(-(5)/(13))](https://img.qammunity.org/2021/formulas/mathematics/high-school/o6ujvqk2abizf59avi3ycc6g1wmhnkf2r5.png)
![sin(\alpha)=(12)/(13)](https://img.qammunity.org/2021/formulas/mathematics/high-school/y8dx4j8tznru4fw0j0msqtlq0eu0y3wqgw.png)
step 3
Find sin β
we know that
![sin^2(\beta)+cos^2(\beta)=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/p4r3ys1mj9oedjju8ifd2400t4bt1od2gy.png)
we have
![cos(\beta)=(3)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/6jlmxhyrsxdqhqn8z20s4zgd0qvkzrooue.png)
substitute
![sin^2(\beta)+((3)/(5))^2=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/i4oz41lqr3wo2468lxqnnev0zsoxx57hd7.png)
![sin^2(\beta)=1-((3)/(5))^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/w34loh8nj4z3iohzxkbmnrml13cmg43bwv.png)
![sin^2(\beta)=1-(9)/(25)](https://img.qammunity.org/2021/formulas/mathematics/high-school/69xr4c07khirrqy0ejhmu1mfi6uzp6ishp.png)
![sin^2(\beta)=(16)/(25)](https://img.qammunity.org/2021/formulas/mathematics/high-school/p5lv2qefk7gctfsqo2ezdzl0edsrac9xr5.png)
![sin(\beta)=\pm(4)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/mt1bnex5v841huwbw67c934wzifdnt76xj.png)
Remember that
Angle β lies in quadrant IV
so
sin β is negative
![sin(\beta)=-(4)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/g9zlq8l624fn8nn56xk9sq02psxdioy0td.png)
step 4
Find cos(α−β)
we know that
![cos(\alpha+\beta)=cos(\alpha)cos(\beta)-sin(\alpha)sin(\beta)](https://img.qammunity.org/2021/formulas/mathematics/high-school/jq1ki8k2nx26s9jqb38eufmscrl3xzlg26.png)
we have
![cos(\alpha)=-(5)/(13)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8q5xz3s0ub993dmwtlvgjiu9mmvwpdwfgy.png)
![cos(\beta)=(3)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/6jlmxhyrsxdqhqn8z20s4zgd0qvkzrooue.png)
![sin(\alpha)=(12)/(13)](https://img.qammunity.org/2021/formulas/mathematics/high-school/y8dx4j8tznru4fw0j0msqtlq0eu0y3wqgw.png)
![sin(\beta)=-(4)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/g9zlq8l624fn8nn56xk9sq02psxdioy0td.png)
substitute the given values
![cos(\alpha+\beta)=(-(5)/(13))((3)/(5))-((12)/(13))(-(4)/(5))](https://img.qammunity.org/2021/formulas/mathematics/high-school/i5y4oys6f9w9ks3rpnt9p2kgwh1z61jez4.png)
![cos(\alpha+\beta)=(-(15)/(65))+((48)/(65))](https://img.qammunity.org/2021/formulas/mathematics/high-school/8bcx22mdzbsaaiad99txxcqb1kcyhh4z1h.png)
![cos(\alpha+\beta)=(33)/(65)](https://img.qammunity.org/2021/formulas/mathematics/high-school/retaj26zed3px0buw06f2bgnd5lfc4q4mz.png)