111k views
5 votes
Cos (0) = square root 2/2 and 3pi/2<0<2 pi , evaluate sin(0) and tan (0)

User Mpeters
by
8.0k points

2 Answers

3 votes

Answer:

The first one is B.... -sqrt(2)/ 2

The Second one is -1

Explanation:

Cos (0) = square root 2/2 and 3pi/2<0<2 pi , evaluate sin(0) and tan (0)-example-1
User Koralarts
by
8.2k points
4 votes

Answer:


\sin\theta=-(\sqrt2)/(2)} and
\tan\theta=-1

Explanation:

Given :
\cos\theta=(\sqrt2)/(2) and
(3\pi)/(2)<\theta<2

To find : Evaluate
\sin\theta and
\tan\theta ?

Solution :

As
(3\pi)/(2)<\theta<2 means
\theta belong to the third or fourth quadrant .

So,
\sin\theta is negative and
\tan\theta is positive in third and negative in fourth.

Using the formula of trigonometric,


\sin^2\theta+\cos^2\theta=1


\sin\theta=√(1-\cos^2\theta)

Substitute
\cos\theta=(\sqrt2)/(2) ,


\sin\theta=\pm\sqrt{1-((\sqrt2)/(2))^2}


\sin\theta=\pm\sqrt{1-(2)/(4)}


\sin\theta=\pm\sqrt{1-(1)/(2)}


\sin\theta=\pm\sqrt{(1)/(2)}


\sin\theta=-(\sqrt2)/(2)}

Now using another formula,


\tan\theta=(\sin\theta)/(\cos\theta)


\tan\theta=(-(\sqrt2)/(2))/((\sqrt2)/(2))


\tan\theta=-1

Therefore,
\sin\theta=-(\sqrt2)/(2)} and
\tan\theta=-1.

User Vijay Sahu
by
8.2k points