78.2k views
25 votes
What is the square root of -2i?

User Fajar Khan
by
8.3k points

1 Answer

5 votes

Answer:

1-i and -1+i

Explanation:

We are to find the square roots of
z=0-2i. First, convert from Cartesian to polar form:


r=√(a^2+b^2)\\r=√(0^2+(-2)^2)\\r=√(0+4)\\r=√(4)\\r=2


\theta=tan^(-1)((b)/(a))\\ \theta=tan^(-1)((-2)/(0))\\\theta=(3\pi)/(2)


z=2(\cos(3\pi)/(2)+i\sin(3\pi)/(2))

Next, use the formula
\displaystyle \sqrt[n]{r}\biggr[\cis\biggr((\theta+2\pi k)/(n)\biggr)\biggr] where
\displaystyle k=0,1,2,...\:,n-1 to find the square roots:

When k=1


\displaystyle \sqrt[2]{2}\biggr[cis\biggr(((3\pi)/(2)+2\pi(1))/(2)\biggr)\biggr]


\displaystyle √(2)\biggr[cis\biggr((3\pi)/(4)+\pi\biggr)\biggr]


√(2)\biggr(cis(7\pi)/(4)\biggr)


√(2)(\cos(7\pi)/(4)+i\sin(7\pi)/(4))\\ \\√(2)((√(2))/(2)-(√(2))/(2)i)\\ \\1-i

When k=0


\displaystyle \sqrt[2]{2}\biggr[cis\biggr(((3\pi)/(2)+2\pi(0))/(2)\biggr)\biggr]


√(2)\biggr(cis(3\pi)/(4)\biggr)


√(2)(\cos(3\pi)/(4)+i\sin(3\pi)/(4))\\ \\√(2)(-(√(2))/(2)+(√(2))/(2)i)\\ \\-1+i

Thus, the square roots of -2i are 1-i and -1+i

User CommaToast
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories