Answer:
A, D
Explanation:
Given function:
![f(x)=x^2+4x-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/q78zjyamhhza3j5hl9siuvok30axpqku4f.png)
Axis of symmetry
![\textsf{Axis of Symmetry formula : }x=-(b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/high-school/lyjh67w7l6605f2tocdpbvv7vjh07gi30b.png)
for a quadratic equation in standard form
![y=ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/high-school/g7mvpjunjwe6qob7ddy7l4f0glbtdi9gci.png)
![\implies \textsf{Axis of symmetry}: x=-(4)/(2)=-2](https://img.qammunity.org/2023/formulas/mathematics/high-school/hyqojycxgjlzirjcw2idi6dfh7y6v8vzbl.png)
Maximum/Minimum point (vertex)
The max/min point is the turning point of the parabola.
The x-value of the turning point is the axis of symmetry.
![\implies \textsf{Turning point}:f(-2)=(-2)^2+4(-2)-3=-7](https://img.qammunity.org/2023/formulas/mathematics/high-school/2saqdhiwfvjuajmkln7zi2u8j1pqtn2on0.png)
Turning point (vertex) = (-2, -7)
As the leading coefficient is positive, the parabola opens upwards. Therefore, the turning point (-2, -7) will be a minimum.
Domain & Range
Domain: input values → All real numbers
Range: output values →
[as (-2, -7) is the minimum point]
End behavior
As the leading degree is positive and the leading coefficient is positive:
![f(x) \rightarrow + \infty, \textsf{ as } x \rightarrow - \infty](https://img.qammunity.org/2023/formulas/mathematics/high-school/3lz8e7bklp336gi97yg2prkh31fdlkve75.png)
![f(x) \rightarrow + \infty, \textsf{ as } x \rightarrow + \infty](https://img.qammunity.org/2023/formulas/mathematics/high-school/ty9qesqeabtu2m8k3erwntld1iiu4u3d4d.png)