Answer:
c) 2
d) 0.96
Explanation:
We are given the following in the question:

a) probability density function.
![\displaystyle\int^(\infty)_(\infty)f(x) dx = 1\\\\\displaystyle\int^(\infty)_(-\infty)2x^(-3)dx = 1\\\\\displaystyle\int^(\infty)_(1)2x^(-3)dx\\\\\Rightarrow \big[-x^(-2)\big]^(\infty)_1\\\\\Rightarrow -(0-1) = 1](https://img.qammunity.org/2021/formulas/mathematics/college/zov2w31ynil2lmk29gbfbr0h83i19zk687.png)
Thus, it is a probability density function.
b) cumulative distribution function.
![P(X<x) = \displaystyle\int^(x)_(1)2x^(-3)dx\\\\P(X<x)=\big[-(x^(-2))\big]^(x)_(1)\\\\P(X<x)=-\bigg((1)/(x^2)-1\bigg) = 1 - (1)/(x^2)](https://img.qammunity.org/2021/formulas/mathematics/college/8sguhqvrkh67ydr4mlpryy5d8mtb7cyhyr.png)
c) mean of the distribution

d) probability that the size of random particle will be less than 5 micrometers
