Answer:
a) T = 4335.398 N-m
b) ∅ = 0.045 rad
Step-by-step explanation:
Given
τ allow (mg) = 45 MPa
τ allow (st) = 75 MPa
G mg = 18*10⁹ Pa
G st = 75*10⁹ Pa
L st = L mg = L = 900 mm = 0.9 m
D₁ = 40 mm = 0.04 m
D₂ = 80 mm = 0.08 m
We write the expression of angle of twist:
∅ mg = ∅ st
T mg* L mg / (J mg* G mg) = T st* L st / (J st* G st)
If
L st = L mg = L = 900 mm = 0.9 m
G mg = 18*10⁹ Pa
G st = 75*10⁹ Pa
J mg = π*(D₂⁴ - D₁⁴)/32 ⇒ J mg = π*((0.08 m)⁴ - (0.04 m)⁴)/32
⇒ J mg = 3.7699*10⁻⁶ m⁴
J st = π*D₁⁴/32 ⇒ J st = π*(0.04 m)⁴/32
⇒ J st = 2.5133*10⁻⁷ m⁴
We have
T mg / (J mg* G mg) = T st / (J st* G st)
⇒ T mg / (3.7699*10⁻⁶ m⁴* 18*10⁹ Pa) = T st / (2.5133*10⁻⁷ m⁴* 75*10⁹ Pa)
⇒ T mg = 3.6*T st
Then, we apply moment equilibrium condition
∑M = 0
⇒ T mg + T st - T = 0
⇒ 3.6*T st + T st - T = 0
⇒ T st = 0.2174*T
Now, we determine the value of T mg
T mg = 3.6*T st = 3.6*(0.2174*T)
⇒ T mg = 0.7826*T
Now, we write the expression to determine the torque at
τ allow (mg) = T mg* R₂ / J mg
⇒ T mg = τ allow (mg)* J mg / R₂
⇒ 0.7826*T = 45*10⁶ Pa* 3.7699*10⁻⁶ m⁴ / 0.04 m
⇒ T = 5419.24 N-m
then
τ allow (st) = T st* R₁ / J st
⇒ T st = τ allow (st)* J st / R₁
⇒ 0.2174*T = 75*10⁶ Pa* 2.5133*10⁻⁷ m⁴ / 0.02 m
⇒ T = 4335.398 N-m (which satisfies the allowable shear stresses)
We can find the angle of twist:
∅ mg = T mg* L mg / (J mg* G mg)
∅ mg = 0.7826*T
* L mg / (J mg* G mg)
⇒ ∅ mg = 0.7826*(4335.398 N-m)
* (0.9 m) / (3.7699*10⁻⁶ m⁴* 18*10⁹ Pa)
⇒ ∅ mg = 0.045 rad
In order to understand the question, we can see the pic shown.