104k views
1 vote
Find dy/dt at x = -2 if y = -2x^2 - 5 and dx/dt = -5

dy/dt = ???

User Mirna
by
5.6k points

1 Answer

3 votes


$(dy)/(dt)=-40

Solution:

Given data:


y=-2 x^(2)-5 and
(dx)/(dt)=-5

To find
(dy)/(dt):


y=-2 x^(2)-5

Differentiate y with respect to t.


$(dy)/(dt)=(d)/(dt)(-2x^2-5)


$(dy)/(dt)=(d)/(dt)(-2x^2)-(d)/(dt)(5)

Apply the differentiation rule:
(d)/(d x)\left(x^(n)\right)=n \cdot x^(n-1)


$(dy)/(dt)=2(-2x^(2-1))\cdot (dx)/(dt) -(d)/(dt)(5)


$(dy)/(dt)=-4x\cdot (dx)/(dt) -(d)/(dt)(5)

Apply the differentiation rule:
(d)/(dt)a=0


$(dy)/(dt)=-4x\cdot (dx)/(dt) -0


$(dy)/(dt)=-4x\cdot (dx)/(dt)

At x = –2 and
(dx)/(dt)=-5


$(dy)/(dt)=-4(-2)\cdot (-5)


$(dy)/(dt)=-40

Therefore,
(dy)/(dt)=-40.

User Thilina Dharmasena
by
5.5k points