is the final river temperature after the cooling water and river have mixed.
Step-by-step explanation:
Final river temperature after mixing using energy energy balance equation
![\Delta E_{\text {River }}+\Delta E_{\text {Cooling water}}=0 \ldots \ldots(1)](https://img.qammunity.org/2021/formulas/engineering/college/bsvh8hp8p5c7mqr67lukxjc7mmtgbjzo1f.png)
![\Delta E_{\text {River }}=Q_{\text {River}} \rho C_(P)\left(T-T_{\text {River }}\right)](https://img.qammunity.org/2021/formulas/engineering/college/e9mvq8003etseaatqrrdxfmsyyf05sv0pv.png)
![$\Delta E_{\text {cooling water }}=Q_{\text {cooling water }} \rho C_(P)\left(T-T_{\text {Cooling water }}\right)$](https://img.qammunity.org/2021/formulas/engineering/college/4grm6e00e9vw54j8z2hs1ml25hln9ilr0f.png)
![Q_{\text {River}} \rho C_(P)\left(T-T_{\text {River }}\right)+Q_{\text {Cooling water }} \rho C_(P)\left(T-T_{\text {Cooling water }}\right)=0 \ldots \ldots .(2)](https://img.qammunity.org/2021/formulas/engineering/college/hf70x565awddw9ucx5q0crmnhqqbyllqhs.png)
Where,
is specific heat at constant pressure,
change in temperature,
is flow in the river,
is the flow of cooling water from plant,
final required temperature after mixing cooling water and river water,and,
is density of water.
From Diagram
While substituting,
![40 \mathrm{m}^(3) / \mathrm{s} \text { for } Q_{\text {River }}](https://img.qammunity.org/2021/formulas/engineering/college/jhezjlwie7q0vgwwea96m63esn62r2s9cm.png)
![$2 \mathrm{m}^(3) / \mathrm{s} \quad for\quad Q_{\text {cooling water }}](https://img.qammunity.org/2021/formulas/engineering/college/a6sawoaa7nt1olsqlkg8cxljkyb4tfa5bw.png)
and
![18^(\circ) \mathrm{C} \text { for } T_{\mathrm{River}}](https://img.qammunity.org/2021/formulas/engineering/college/zx3xo5apavltp6pg497xmpk50zplbbh0cw.png)
![Q_{\text {River}} \rho C_(P)\left(T-T_{\text {River }}\right)+Q_{\text {Cooling water }} \rho C_(P)\left(T-T_{\text {Cooling water }}\right)=0](https://img.qammunity.org/2021/formulas/engineering/college/wvoq7kj53ewk1ru0ul30calwou5uojargo.png)
![40 * \rho C_(P)(T-18)+2 * \rho C_(P)(T-40)=0](https://img.qammunity.org/2021/formulas/engineering/college/22tnrk60l5jrn7fjv3054kstppl0w8r85w.png)
![40 *(T-18)+2 *(T-40)=0](https://img.qammunity.org/2021/formulas/engineering/college/dbwyt04rxcnt1hp5xrhsm2jozstqemfs9z.png)
![T=21^(\circ) \mathrm{C}](https://img.qammunity.org/2021/formulas/engineering/college/ujv4jlmtgw5gny4dgnrtzqez0sea1w35qv.png)
Finally, the temperature after the mixing of cool water and river is
.