138k views
4 votes
Use the formula for the cosine of the difference of two angles to find the exact value of the following expression.

Cos(45° - 60°)

User Boran
by
4.5k points

1 Answer

5 votes

Answer:

Exact value of Cos(45° - 60°) is 0.96 using difference of two angles.

Explanation:

Given:

Cos(45° - 60°)

We have to apply the formula of cosine for difference of the two angles.

Formula:


cos(a-b)=cos(a)\ cos(b)+sin(a)\ sin(b)

Plugging the values.


cos(45-60)=cos(45)\ cos(60) + sin(45)\ sin(60)

We know that the values :


sin(45) =cos(45) = (1)/(√(2) )


sin(60)=(√(3) )/(2) and
cos(60)=(1)/(2)

So,


cos(45-60)=((1)/(√(2) ) * (1)/(2) ) + ((1)/(√(2) ) * (√(3) )/(2))


cos(45-60)=((1)/(2√(2) ) + (√(3) )/(2√(2) ))


cos(45-60)=((1+√(3) )/(2√(2) ) )


cos(45-60)=((1+√(3) )/(2√(2) ) )* (2√(2) )/(2√(2) ) ...rationalizing


cos(45-60)=(2√(2) +2√(6) )/( 8)


cos(45-60)=(2(√(2)+√(6)))/(8) ...taking 2 as a common factor


cos(45-60)=((√(2)+√(6)))/(4)

To find the exact values we have to put the values of sq-rt .

As,
√(2)=1.41 and
√(6) =2.44

Then


cos(45-60)=(( 1.41+2.44))/(4)


cos(45-60)=(( 3.85))/(4)


cos(45-60)=0.96

So the exact value of Cos(45° - 60°) is 0.96 using difference of two angles.

User Jeff Janes
by
4.2k points