Answer:
7500 revolutions
Step-by-step explanation:
Given:
Time taken for the centrifuge (t) = 3 min
Initial angular speed of the centrifuge (ω₁) = 0 rad/min (Initially at rest)
Final rotational speed (N₂) = 5000 rpm
So, final angular speed of the centrifuge is given as:
![\omega_2=2\pi N_2=2* \pi* 5000=10000\pi\ rad/min](https://img.qammunity.org/2021/formulas/physics/college/7wwl7mzauo4rrdxajyhfpbwqi1v6lsw2vn.png)
Now, using the concept of angular motion, the angular acceleration is given as:
![\alpha =(\omega_2-\omega_1)/(t)\\\\\alpha =(10000\pi-0)/(3)\\\\\alpha=(10000\pi)/(3)\ rad/min^2](https://img.qammunity.org/2021/formulas/physics/college/gyoqkg2dkvqjyob4rzr2o5i5rgzxv2gbqb.png)
Now, angular displacement of the centrifuge is determined using the angular equation of motion which is given as:
![\theta=\omega_1t+(1)/(2)\alpha t^2\\\\\theta=0+(1)/(2)* (10000\pi)/(3)* (3)^2\\\\\theta=15000\pi\ rad](https://img.qammunity.org/2021/formulas/physics/college/mdiius8343b81tk1wgevqv5lsh8r4eoe1d.png)
Now, we know that, 1 revolution corresponds to a angular displacement of 2π radians.
So, 2π rad = 1 revolution
∴ 15000π rad =
![(15000\pi)/(2\pi)=7500\ revolutions](https://img.qammunity.org/2021/formulas/physics/college/9vkfrzix9vyv0h05vzgtu8jw9kyjnwlehl.png)
Therefore, the centrifuge makes 7500 revolutions.