Answer:
For the dimension equation and equation for inner circle is the answers are shown in the explanation section.
Find an attached image of the solution.
Explanation:
From this equation, we apply the copy able code.
Copy able Code:
%file name olympicring.m
M = 1000;
cirangle = linspace(pi/4,9*pi/4,M);
%set color for 5 rings
xb = cos(cirangle) * 0.9;
yb = sin(cirangle) * 0.9;
xy = cos(cirangle) * 0.9 + 1;
yy = sin(cirangle) * 0.9 - 1;
xk = cos(cirangle) * 0.9 + 2;
yk = sin(cirangle) * 0.9;
xg = cos(cirangle) * 0.9 + 3;
yg = sin(cirangle) * 0.9 - 1;
xr = cos(cirangle) * 0.9 + 4;
yr = sin(cirangle) * 0.9;
%design a olympic Rings
h1 = figure;
hold on
plot(xb(1:3*M/4),yb(1:3*M/4),'b','linewidth',5);
plot(xy(M/4:M),yy(M/4:M),'y','linewidth',5)
plot(xk(1:3*M/4),yk(1:3*M/4),'k','linewidth',5);
plot(xy(1:M/4),yy(1:M/4),'y','linewidth',5);
plot(xb(3*M/4:end),yb(3*M/4:end),'b','linewidth',5);
plot(xr(1:M/2),yr(1:M/2),'r','linewidth',5);
plot(xg(1:M),yg(1:M),'g','linewidth',5);
plot(xk(3*M/4:M),yk(3*M/4:M),'k','linewidth',5);
plot(xr(M/2:M),yr(M/2:M),'r','linewidth',5);
% make the axis pretty
axis equal
axis off
xlim([-1.2 5.2])
set(h1,'Color',[1 1 1])
hold off
a)Dimensions Equation:
(x-28)2+(y-44)2=169
(x-42.5)2+(y-31)2=169
(x-57)2+(y-44)2=169
(x-71.5)2+(y-31)2=169
(x-86)2+(y-44)2=169
b) Equation for inner circles:
If the each ring is increase 3 inches thick.
So the equation is change 169 to 100.
(x-28)2+(y-44)2=100
(x-42.5)2+(y-31)2=100
(x-57)2+(y-44)2=100
(x-71.5)2+(y-31)2=100
(x-86)2+(y-44)2=100