Answer:
144 sq in
Explanation:
Face height=9, bases=6 in
#Assume the pyramid has a square base.
First we need to calculate the perpendicular height of the pyramid:
![#Pythagorean \ Theorem\\a^2+b^2=c^2\\9^2-(0.5* 6)^2=h^2\\72=h^2\\h=√(72) \ in](https://img.qammunity.org/2021/formulas/mathematics/high-school/yrk31oxogk284v64luiurxorou6rrs0v9i.png)
Now to find the surface area of each pyramid:
![A=lw+l√((w/2)^2+h^2)+w√((l/w)^2+h^2)\\\\\#w=l=6,h=√(72)\\\\A=6^2+6√((6/2)^2+72)+6√((6/6)^2+72)\\\\A\approx 144\ sq \ in](https://img.qammunity.org/2021/formulas/mathematics/high-school/i6qxgyujr4wr9m8bz2osrvl85kqajzbruw.png)
Hence amount of construction paper needed to make each pyramid is 144 sq in