35.4k views
3 votes
Find the 2th term of the expansion of (a-b)^4.​

User Spyder
by
4.3k points

1 Answer

3 votes

The second term of the expansion is
-4a^3b.

Solution:

Given expression:


(a-b)^4

To find the second term of the expansion.


(a-b)^4

Using Binomial theorem,


(a+b)^(n)=\sum_(i=0)^(n)\left(\begin{array}{l}n \\i\end{array}\right) a^((n-i)) b^(i)

Here, a = a and b = –b


$(a-b)^4=\sum_(i=0)^(4)\left(\begin{array}{l}4 \\i\end{array}\right) a^((4-i))(-b)^(i)

Substitute i = 0, we get


$(4 !)/(0 !(4-0) !) a^(4)(-b)^(0)=1 \cdot (4 !)/(0 !(4-0) !) a^(4)=a^4

Substitute i = 1, we get


$(4 !)/(1 !(4-1) !) a^(3)(-b)^(1)=(4 !)/(3!) a^(3)(-b)=-4 a^(3) b

Substitute i = 2, we get


$(4 !)/(2 !(4-2) !) a^(2)(-b)^(2)=(12)/(2 !) a^(2)(-b)^(2)=6 a^(2) b^(2)

Substitute i = 3, we get


$(4 !)/(3 !(4-3) !) a^(1)(-b)^(3)=(4)/(1 !) a(-b)^(3)=-4 a b^(3)

Substitute i = 4, we get


$(4 !)/(4 !(4-4) !) a^(0)(-b)^(4)=1 \cdot ((-b)^(4))/((4-4) !)=b^(4)

Therefore,


$(a-b)^4=\sum_(i=0)^(4)\left(\begin{array}{l}4 \\i\end{array}\right) a^((4-i))(-b)^(i)


=(4 !)/(0 !(4-0) !) a^(4)(-b)^(0)+(4 !)/(1 !(4-1) !) a^(3)(-b)^(1)+(4 !)/(2 !(4-2) !) a^(2)(-b)^(2)+(4 !)/(3 !(4-3) !) a^(1)(-b)^(3)+(4 !)/(4 !(4-4) !) a^(0)(-b)^(4)
=a^(4)-4 a^(3) b+6 a^(2) b^(2)-4 a b^(3)+b^(4)

Hence the second term of the expansion is
-4a^3b.

User Vespino
by
5.4k points