Explanation:
We have , to simplify a complex expression . Basically a complex expression in the form a + ib , where i =
and is called iota.
Expression:
![(2+2i)^(8)](https://img.qammunity.org/2021/formulas/mathematics/college/6cq0kk7i987ux87whcb1s4wl30s23awpyo.png)
⇒
![(2+2i)^(8)](https://img.qammunity.org/2021/formulas/mathematics/college/6cq0kk7i987ux87whcb1s4wl30s23awpyo.png)
⇒
![2^(8)(1+i)^(8)](https://img.qammunity.org/2021/formulas/mathematics/college/266qbex4u3ozcz0o1xllpzne18sschxlzw.png)
We know that the mod or modulus of a complex number in the form of
is represented by Z and Z =
. Computing mod of
as :
⇒
![Z = \sqrt{a^(2)+b^(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/io0l9g7eow4lhf56v8x3tbnnb9imxiru3u.png)
⇒
![Z = \sqrt{1^(2)+1^(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/4924ddnomvu3s5xmjhy9mvlhszkjx5hoe5.png)
⇒
![Z = √(2)](https://img.qammunity.org/2021/formulas/mathematics/college/e3trpspn4h7wonsdo8vvsxbeoy5540na8z.png)
Putting value of
as
, we get:
⇒
![2^(8)(1+i)^(8)](https://img.qammunity.org/2021/formulas/mathematics/college/266qbex4u3ozcz0o1xllpzne18sschxlzw.png)
⇒
![2^(8)(√(2))^(8)](https://img.qammunity.org/2021/formulas/mathematics/college/qbiy5k17hx96mz7muyabo5ljyq0obk2rik.png)
⇒
![256(2^(4))](https://img.qammunity.org/2021/formulas/mathematics/college/fnr03vk6b4650kteafqod51vmx5x0yrxs5.png)
⇒
![4096](https://img.qammunity.org/2021/formulas/mathematics/college/3vjap556nq7uvfo09jsif2m9fbu0vfn713.png)