21.7k views
0 votes
Prove that 1-cos2A/sin2A =TanA

1 Answer

1 vote

Explanation:

To prove that:


$(1-\cos 2A)/(\sin2 A)=\tan A

Let us take left hand side and prove it.


$LHS = (1-\cos 2 A)/(\sin 2 A)

Using the trigonometric identity:
$\cos (2 x)=1-2 \sin ^(2)(x)


$= (1-(1-2\sin^2A))/(\sin 2 A)

Using the trigonometric identity:
\sin (2 x)=2 \cos (x) \sin (x)


$= (1-1+2\sin^2A)/(2 \sin A \cos A )


$= (2\sin^2A)/(2 \sin A \cos A )


$= (2\sin A \sin A )/(2 \sin A \cos A )

Cancel the common term 2 sin A on both numerator and denominator.


$=(\sin A)/(\cos A)

Using the trigonometric identity:
(\sin (x))/(\cos (x))=\tan (x)

= tan A

= RHS


$(1-\cos 2A)/(\sin2 A)=\tan A

Hence proved.

User Kiffin
by
4.9k points