78.8k views
5 votes
Estimate the minimum number of subintervals to approximate the value of Integral from negative 2 to 2 (5 x squared plus 4 )dx with an error of magnitude less than 5 times 10 Superscript negative 4 using a. the error estimate formula for the Trapezoidal Rule.

1 Answer

4 votes

Answer:

Explanation:

Given


\int\limits^2_(-2) {(5x^2+4)} \, dx \\\\Here\, f(x)=5x^2+4,

a)

Use the trapesoidal rule:

To find the upper bound frind
f:

Here,
f(x)=10x,\,f

So, the upper bound is
K=10


|E_T|=(10(2-(-2))^3)/(12n^2)\leq 4* 10^(-4)=(53.33)/(n^2)\leq 0.0005\\\\=326.59\leq n

so, n=326.59=327

b)

Use the simpsons rule


K=f^4(x),\,f^4(x)=0,\, so,\, K=0\\\\|E_s|=(K(b-a)^5)/(180n^4)=0

so, n = 2

User Matthias Hamann
by
4.8k points