The smallest allowable depth is
for the milled portion of bar.
Step-by-step explanation:
Given,
Magnitude of force,
![\mathbf{p}=18 \mathrm{kN}](https://img.qammunity.org/2021/formulas/engineering/college/cvf556qv81wnyq1ei0tc90bd9phfs03ayp.png)
![a=30 \mathrm{mm}](https://img.qammunity.org/2021/formulas/engineering/college/60fgdogassqapn5t3rt507jvblajpa0mw9.png)
![=0.03 \mathrm{m}](https://img.qammunity.org/2021/formulas/engineering/college/12jwfa4sd17qj6ju33bqdrbpdm4jtaiicw.png)
Allowable stress,
![\sigma_(a l l)=135 \mathrm{MPa}](https://img.qammunity.org/2021/formulas/engineering/college/pmumj1y2lcman0jq0ph2c425i47jbekwfl.png)
cross sectional area of bar,
![A=a * d](https://img.qammunity.org/2021/formulas/engineering/college/zko8surb7a4mjmyh619kgws8x9z0npebox.png)
![A=a d](https://img.qammunity.org/2021/formulas/engineering/college/znga4t4a1g75h57ima57hbq0lccsjz75uz.png)
e - eccentricity
![e=(a)/(2)-(d)/(2)](https://img.qammunity.org/2021/formulas/engineering/college/shp49jy0bb1fw22zqkq38pmv5jthb5ifzw.png)
The internal forces in the cross section are equivalent to a centric force P and a bending couple M.
![M=P e](https://img.qammunity.org/2021/formulas/engineering/college/aphcthk0vx4jzpcvbbzmw292eegg5jcc0a.png)
![=P\left((a)/(2)-(d)/(2)\right)](https://img.qammunity.org/2021/formulas/engineering/college/p4wicqir6ns57do5p8qypaj2f0pdkylsv9.png)
![=(P(a-d))/(2)](https://img.qammunity.org/2021/formulas/engineering/college/vprejuwio7rlxr3pqpc5odk07gi6ybwbxf.png)
Allowable stress
![\sigma=(P)/(A)+(M c)/(I)](https://img.qammunity.org/2021/formulas/engineering/college/qpprqvrfxeqorgxbn7d5treqfql8qzfv11.png)
![c=(d)/(2)](https://img.qammunity.org/2021/formulas/engineering/college/vui52rqyhjiurs1wcpkl2nqthxcwa0zd54.png)
Moment of Inertia,
![I=(b d^(3))/(12)](https://img.qammunity.org/2021/formulas/engineering/college/o3gliu791e13gkf8o9p26u79pustwtk86a.png)
![=(a d^(3))/(12)](https://img.qammunity.org/2021/formulas/engineering/college/rrtvgtznw2uclgmov8nlv2spilq3kldspk.png)
![\therefore \sigma=(P)/(a d)+((P(a-d))/(2) * (d)/(2))/((a d^(3))/(12))](https://img.qammunity.org/2021/formulas/engineering/college/k9kj992kt71xcjzzg5fhnekp8sie08trvf.png)
![\sigma=(P)/(a d)+(3 P(a-d))/(a d^(2))\\](https://img.qammunity.org/2021/formulas/engineering/college/gxixegqtxwb19j4vcwbwc7vf1easjj4bpn.png)
![√(x) \sigma\left(a d^(2)\right)=P d+3 P(a-d)](https://img.qammunity.org/2021/formulas/engineering/college/kgcfqvr9gttldlqssdpzz8t6hb0kx3hk0r.png)
![\sigma\left(a d^(2)\right)=P d+3 P a-3 P d](https://img.qammunity.org/2021/formulas/engineering/college/n8rt2lbbra0dex6wt3l0rva79xa6nsdshg.png)
![\sigma\left(a d^(2)\right)=(P-3 P) d+3 P a](https://img.qammunity.org/2021/formulas/engineering/college/gvgawe366mp9hsaajhwgral9cdompjesa6.png)
![\left(\sigma a d^(2)\right)=-2 P d+3 P a](https://img.qammunity.org/2021/formulas/engineering/college/udpliaj2ruuc5icoclf9cgkxpi76argj8j.png)
![\sigma d^(2)=-(2 P)/(a) d+3 P](https://img.qammunity.org/2021/formulas/engineering/college/qyu6br95ezpjdefkb3f4oah8ltjwxum9n5.png)
By substituting values we get,
![\left(135 * 10^(6)\right) d^(2)+(2 * 18 * 10^(3))/(0.03) d-3\left(18 * 10^(3)\right)=0](https://img.qammunity.org/2021/formulas/engineering/college/noj4gl86t4r3ig1in2n9fkvsupglcmfbha.png)
![\left(135 * 10^(6)\right) d^(2)+\left(12 * 10^(5)\right) d-54 * 10^(3)=0](https://img.qammunity.org/2021/formulas/engineering/college/mte2ffmvcw0yltoprwkqvfbkj8sjpcou7z.png)
On solving above equation we get,
![d=0.01604 \mathrm{m}\\](https://img.qammunity.org/2021/formulas/engineering/college/oe9fnkr1bjmu7wirl1j6fvfwghkmkn4wku.png)
![d=16.04 \mathrm{mm}](https://img.qammunity.org/2021/formulas/engineering/college/fyti5ffyb5ecng0ikgxlvzikvb75te9knq.png)