55.7k views
2 votes
A milling operation was used to remove a portion of a solid bar of square cross section. Forces of magnitude P = 18 kN are applied at the centers of the ends of the bar. Knowing that a = 30 mm and σall = 135 MPa, determine the smallest allowable depth d of the milled portion of the bar.

User Winton Hou
by
5.5k points

1 Answer

4 votes

The smallest allowable depth is
d=16.04 \mathrm{mm} for the milled portion of bar.

Step-by-step explanation:

Given,

Magnitude of force,
\mathbf{p}=18 \mathrm{kN}


a=30 \mathrm{mm}


=0.03 \mathrm{m}

Allowable stress,
\sigma_(a l l)=135 \mathrm{MPa}

cross sectional area of bar,


A=a * d


A=a d

e - eccentricity


e=(a)/(2)-(d)/(2)

The internal forces in the cross section are equivalent to a centric force P and a bending couple M.


M=P e


=P\left((a)/(2)-(d)/(2)\right)


=(P(a-d))/(2)

Allowable stress


\sigma=(P)/(A)+(M c)/(I)


c=(d)/(2)

Moment of Inertia,


I=(b d^(3))/(12)


=(a d^(3))/(12)


\therefore \sigma=(P)/(a d)+((P(a-d))/(2) * (d)/(2))/((a d^(3))/(12))


\sigma=(P)/(a d)+(3 P(a-d))/(a d^(2))\\


√(x) \sigma\left(a d^(2)\right)=P d+3 P(a-d)


\sigma\left(a d^(2)\right)=P d+3 P a-3 P d


\sigma\left(a d^(2)\right)=(P-3 P) d+3 P a


\left(\sigma a d^(2)\right)=-2 P d+3 P a


\sigma d^(2)=-(2 P)/(a) d+3 P

By substituting values we get,


\left(135 * 10^(6)\right) d^(2)+(2 * 18 * 10^(3))/(0.03) d-3\left(18 * 10^(3)\right)=0


\left(135 * 10^(6)\right) d^(2)+\left(12 * 10^(5)\right) d-54 * 10^(3)=0

On solving above equation we get,
d=0.01604 \mathrm{m}\\


d=16.04 \mathrm{mm}

User Rfgamaral
by
5.2k points