Answer:
Maximum volume error = ±540 cm³
Relative error = 0.02
Percentage error = 2%
Explanation:
Relative error : The ratio of volume error to the total volume.
Percentage error: The product of relative error and 100.
The volume of a cube is =
![side^3](https://img.qammunity.org/2021/formulas/mathematics/college/behth5tsla01to8ueczaf5i5pcmfmmjvre.png)
v =x³
Differentiate with respect to x
![(dv)/(dx) = 3x^2](https://img.qammunity.org/2021/formulas/mathematics/college/ybsdv0lnrs9p0hrpzpqi9aux3b0thrji7z.png)
![\Rightarrow dv = 3x^2 dx](https://img.qammunity.org/2021/formulas/mathematics/college/sqnh50u9aywvle52azp1h2ehbhop2fsrk3.png)
Here are x = 30 cm and dx= ±0.2 cm
∴ dv = 3×(30 cm)² (±0.2 cm)
=±540 cm³
The volume of the cube = 30³ cm ³ = 27,000 cm³
Then the relative error
![=(dv)/(v)](https://img.qammunity.org/2021/formulas/mathematics/college/gp18wdb9lk50irrujj1ib0kprwpgv5yjvj.png)
![=(540 cm^3)/(27,000 cm^3)](https://img.qammunity.org/2021/formulas/mathematics/college/pme06apynnryqsqdhejzah8f9o47ownzcz.png)
= 0.02.
The percentage error
= (0.02×100)
=2%