Answer:
![32x^2\sqrt[3]{2x} -8x^3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/27hs4j1lwidspjicjtsofpjao96qqwj70p.png)
Explanation:
To multiply radicals of the same index, we multiply the coefficient of the radicals together and the radicands (the things inside the radical) together.
![4x\sqrt[3]{4x^2} (2\sqrt[3]{32x^2} -x\sqrt[3]{2x} )](https://img.qammunity.org/2021/formulas/mathematics/middle-school/68bjla86figt0o5kx4cds6q0ez6mln28kl.png)
![(4x)(2)\sqrt[3]{(4x^2)(32x^2)} -(4x)(x)\sqrt[3]{(4x^2)(2x)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zb2al8xfl0ny5gq1wxddgy0sbagxu3m51h.png)
![8x\sqrt[3]{128x^4} -4x^2\sqrt[3]{8x^3}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hrf1l0ptor0oxlpnkwc7xm0d549qcf6jwv.png)
Remember that
,
, and
, so:
![8x\sqrt[3]{(2^6)(2)(x^3)(x)} -4x^2\sqrt[3]{2^3x^3}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/h0r2nwcnva0o8rrb0ldpscn0p2phvjyuus.png)
Remember that radicands with the same index (or evenly divisible by the index) can be taken out the radical, so:
![(2^2)(x)(8x)\sqrt[3]2{x} -(4x^2)(2x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/85yig0u26kb8jxn35gctzlj63et9cxysny.png)
![32x^2\sqrt[3]{2x} -8x^3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/27hs4j1lwidspjicjtsofpjao96qqwj70p.png)
We can conclude that the second choice is the correct answer.