190k views
3 votes
Multiply: 4x * root(3, 4x ^ 2) * (2 * root(3, 32x ^ 2) - x * root(3, 2x))

Multiply: 4x * root(3, 4x ^ 2) * (2 * root(3, 32x ^ 2) - x * root(3, 2x))-example-1
User DerekC
by
6.0k points

2 Answers

4 votes

Answer:


32x^2\sqrt[3]{2x} -8x^3

Explanation:

To multiply radicals of the same index, we multiply the coefficient of the radicals together and the radicands (the things inside the radical) together.


4x\sqrt[3]{4x^2} (2\sqrt[3]{32x^2} -x\sqrt[3]{2x} )


(4x)(2)\sqrt[3]{(4x^2)(32x^2)} -(4x)(x)\sqrt[3]{(4x^2)(2x)}


8x\sqrt[3]{128x^4} -4x^2\sqrt[3]{8x^3}

Remember that
128=2^7=(2^6)(2),
8=2^3, and
x^4=(x^3)(x), so:


8x\sqrt[3]{(2^6)(2)(x^3)(x)} -4x^2\sqrt[3]{2^3x^3}

Remember that radicands with the same index (or evenly divisible by the index) can be taken out the radical, so:


(2^2)(x)(8x)\sqrt[3]2{x} -(4x^2)(2x)


32x^2\sqrt[3]{2x} -8x^3

We can conclude that the second choice is the correct answer.

User Girardi
by
5.8k points
4 votes

Answer:


32 {x}^(2) \sqrt[3]{ 2x } -8{x}^(3)

Explanation:

We want to


4x \sqrt[3]{4 {x}^(2) } (2 \sqrt[3]{32 {x}^(2) } - x \sqrt[3]{2x} )

We expand to obtain:


4x \sqrt[3]{4 {x}^(2) } * 2 \sqrt[3]{32 {x}^(2) } -4x \sqrt[3]{4 {x}^(2) } * x \sqrt[3]{2x} )

We now simplify


8x \sqrt[3]{4 {x}^(2) * 32 {x}^(2) } -4 {x}^(2) \sqrt[3]{4 {x}^(2) * 2x}

We multiply the radicand


8x \sqrt[3]{64 * {x}^(3) * 2x } -4 {x}^(2) \sqrt[3]{8 {x}^(3)}

Or


8x \sqrt[3]{ {(4x)}^(3) * 2x } -4 {x}^(2) \sqrt[3]{{(2x)}^(3)}

We take cube root to get:


8x * 4x\sqrt[3]{ 2x } -4 {x}^(2) * 2x

We multiply out to get:


32 {x}^(2) \sqrt[3]{ 2x } -8{x}^(3)

User Davr
by
6.3k points