Answer:
![25.39Hz](https://img.qammunity.org/2021/formulas/physics/high-school/u7y6ios021yakxzh47surazzznpf6q9rjl.png)
Step-by-step explanation:
#First, we need to determine the actual emf required. The generator's internal resistance will cause a voltage drop inside the generator/
Internal resistance is defined using the formula:
![R=\rho L/A\\\rho=1.68*10^-^8 \Omega m\\L=0.050m*4* 60=12.0m\\A=\pi r^2=\pi d^2/4=\pi(0.00059m)^2/4=2.734*10^-^7m^2\\\\R=(1.68*10^-^8 \Omega \ m* 12.0m)/2.734*10^-^7m^2\\=0.7374\ \Omega](https://img.qammunity.org/2021/formulas/physics/high-school/wr53bqyya4nox35u7p0ifxshvltv0zfm35.png)
#The bulb is rated 12.0V,25.0W
Current,
![I=25.0W/12.0V=2.083A](https://img.qammunity.org/2021/formulas/physics/high-school/zj903kqmztjqvvghejmbectmhdwkyvdrx4.png)
Therefore, the voltage drop in the generator is calculated as:
Actual EMF required is thus 1.536V+12.0V=13.536V
#peak voltage is
![13.536V\sqrt 2=19.143V](https://img.qammunity.org/2021/formulas/physics/high-school/cogbeqs4d3emojfoz1q8rkjz95mmzegp9m.png)
#For a generator, by Faraday's Law
![E_m_a_x=NBA\ \omega\\19.143=60* 0.800T* (0.05m)^2\ \omega\\\\\omega=159.525rad/s](https://img.qammunity.org/2021/formulas/physics/high-school/o4dnzhc218lxwrds0aopi4f1jgrdm8t61v.png)
![f=\omega/2\pi\\=159.525/2\pi=25.39Hz](https://img.qammunity.org/2021/formulas/physics/high-school/cb2dh193kzwmgjo9b2vb4slpyr7cw12h67.png)
#The rate of the generator is 25.39Hz