Answer:
0.011
Step-by-step explanation:
Let X represents the number of automobiles that arrive at a certain intersection per minute
X follows a Poisson distribution with a mean of 3.
Calculating the probability that more than 9 automobiles appear at the intersection during any given minute of time;
P(X > 9) = 1 - P(X ≤ 9)
P(X>9) = 1 - ∑(e^-λ * λ^x)/x! For x = 0 to 9.
P(X>9) = 1 - (P(X=0) + P(X=1) +.....+P(X=9))
P(X>9) = 1 - ((e^-3 * 3^0)/0! + (e^-3 * 3^1)/1! + ...... + (e^-3 * 3^9)/9!))
P(X>9) = 1 - (0.049787068367863 + 0.149361205103591 + 0.224041807655387 + 0.224041807655387 + 0.168031355741540 + 0.100818813444924 + 0.050409406722462 + 0.021604031452483 + 0.008101511794681 + 0.002700503931560)
P(X>9) = 0.001102488130122
P(X>9) = 0.0011 --- Approximated