11.9k views
5 votes
Please help I am terrible at algebra

Please help I am terrible at algebra-example-1
Please help I am terrible at algebra-example-1
Please help I am terrible at algebra-example-2
Please help I am terrible at algebra-example-3
User Writwick
by
7.9k points

1 Answer

0 votes

Step-by-step explanation:

PART 1.

A quadratic function is given by the form:


f(x)=ax^2+bx+c

While a linear function is given by:


y=mx+b

In this case, we have 2 cases:

CASE 1


f(x)=-x(2x+8)

Applying distributive property we get:


f(x)=-x(2x+8) \\ \\ f(x)=-2x^2-8x

So this is a quadratic function.


\text{Quadratic term:}-2x^2 \\ \\ \text{linear term:}-8x \\ \\ \text{constant term:} None

CASE 2


f(x)=x^2-7

So this is a quadratic function.


\text{Quadratic term:} \ x^2 \\ \\ \text{linear term:} \ None \\ \\ \text{constant term:} \ -7

PART 2.

Remember that for a quadratic function we have:


f(x)=ax^2+bx+c \\ \\ \\ a,b,c \ are \ constants

From the table:


When \ x=0, \ y=9: \\ \\ f(0)=9=a(0)^2+b(0)+c \\ \\ c=9


When \ x=1, \ y=16: \\ \\ f(1)=16=a(1)^2+b(1)+9 \\ \\ 16=a+b+9 \\ \\ a+b=7


When \ x=-4, \ y=1: \\ \\ f(-4)=1=a(-4)^2+b(-4)+9 \\ \\ 1=16a-4b+9 \\ \\ 16a-4b=-8

Solving for a and b:


a=7-b \\ \\ \text{Substituting into 16a-4b=-8:} \\ \\ 16(7-b)-4b=-8 \\ \\ 112-16b-4b=-8 \\ \\ -20b=-8-112 \\ \\-20b=-120 \\ \\ b=6 \\ \\ Then: \\ \\ a=7-6 \\ \\ a=1

So the equation is:


\boxed{f(x)=x^2+6x+9}

User Vedhavyas
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories