11.9k views
5 votes
Please help I am terrible at algebra

Please help I am terrible at algebra-example-1
Please help I am terrible at algebra-example-1
Please help I am terrible at algebra-example-2
Please help I am terrible at algebra-example-3
User Writwick
by
3.9k points

1 Answer

0 votes

Step-by-step explanation:

PART 1.

A quadratic function is given by the form:


f(x)=ax^2+bx+c

While a linear function is given by:


y=mx+b

In this case, we have 2 cases:

CASE 1


f(x)=-x(2x+8)

Applying distributive property we get:


f(x)=-x(2x+8) \\ \\ f(x)=-2x^2-8x

So this is a quadratic function.


\text{Quadratic term:}-2x^2 \\ \\ \text{linear term:}-8x \\ \\ \text{constant term:} None

CASE 2


f(x)=x^2-7

So this is a quadratic function.


\text{Quadratic term:} \ x^2 \\ \\ \text{linear term:} \ None \\ \\ \text{constant term:} \ -7

PART 2.

Remember that for a quadratic function we have:


f(x)=ax^2+bx+c \\ \\ \\ a,b,c \ are \ constants

From the table:


When \ x=0, \ y=9: \\ \\ f(0)=9=a(0)^2+b(0)+c \\ \\ c=9


When \ x=1, \ y=16: \\ \\ f(1)=16=a(1)^2+b(1)+9 \\ \\ 16=a+b+9 \\ \\ a+b=7


When \ x=-4, \ y=1: \\ \\ f(-4)=1=a(-4)^2+b(-4)+9 \\ \\ 1=16a-4b+9 \\ \\ 16a-4b=-8

Solving for a and b:


a=7-b \\ \\ \text{Substituting into 16a-4b=-8:} \\ \\ 16(7-b)-4b=-8 \\ \\ 112-16b-4b=-8 \\ \\ -20b=-8-112 \\ \\-20b=-120 \\ \\ b=6 \\ \\ Then: \\ \\ a=7-6 \\ \\ a=1

So the equation is:


\boxed{f(x)=x^2+6x+9}

User Vedhavyas
by
4.1k points