77.7k views
1 vote
Put the numbers in order from least to greatest.

1.25 x 10^-1,
0.00025,
0.025,
0.025 x 10,
0.5 x 10^-5,
1.45 x 10^ -3,
25.4 x 10^ -4,
3.5 x 10 ^ -4

1 Answer

4 votes

Answer:


0.5*{10}^(-5),

0.00025,


3.5*{10}^(-4),


1.45 * {10}^(-3),


25.4 * {10}^( - 4),

0.025,


1.25* {10}^(-1),


0.025 *10

Explanation:

We can do it this way.

First, let us clear off the powers by multipying each number by


{10}^(5)

This implies that,


1.25 * {10}^( - 1) = 1.25 * {10}^( - 1) * {10}^(5)


\implies \: 1.25 * {10}^( - 1) = 125 * {10}^( - 2) * {10}^( - 1) * {10}^(5)


\implies \: 1.25 * {10}^( - 1) =125 * {10}^(( - 2 - 1 + 5))


\implies \: 1.25 * {10}^( - 1) =125 * {10}^(2)= 125 * 100 = 12500


0.00025 = 25 * {10}^( - 5) * {10}^(5)


\implies0.00025 = 25 * {10}^( - 5 + 5) = 25


0.025 = 25 * {10}^( - 3)=25 *{10}^( - 3)* {10}^(5)


\implies0.025 = 25 * {10}^( - 3)=25 *{10}^( - 3 + 5)


\implies0.025 = 25 * {10}^( - 3)=25 *{10}^(2) = 25 * 100 = 2500


0.025 * 10=25 * {10}^( - 3) *10 * {10}^(5)


\implies0.025 *10=25*{10}^((- 3 + 1 + 5))=25*{10}^(3)


\implies0.025*10=25*1000 = 25000


0.5* {10}^(-5)=0.5* {10}^( - 5) * {10}^(5)


0.5*{10}^(-5)=0.5* {10}^((- 5+5))=0.5


1.45 * {10}^(-3) = 145 * {10}^( - 2) * {10}^( - 3) * {10}^(5)


\implies1.45 * {10}^(-3) = 145


25.4 * {10}^( - 4) = 254 * {10}^(-1) * {10}^( - 4) * {10}^(5)


\implies25.4 * {10}^ {-4} = 254


3.5 *{10}^(-4)=35 * {10}^(-1) * {10}^( - 4) * {10}^(5)


\implies3.5 *{10}^(-4)=35

Arranging in order from the smallest, we have;

0.5,25,35,145,254,2500,12500,25000

Hence,


0.5*{10}^(-5),

0.00025,


3.5*{10}^(-4),


1.45 * {10}^(-3),


25.4 * {10}^( - 4),

0.025,


1.25* {10}^(-1),


0.025 *10

User Christophe Bornet
by
5.6k points