Answer:
a.
![Month\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Pop(whole \ ant)\\month1 => x_1=80*0.94^1=1128\\month2=>x_2=1200*0.94^2=1060\\month3=>x_3=1200*0.94^3=996\\month4=>x_4=1200*0.94^4=936](https://img.qammunity.org/2021/formulas/mathematics/college/g9qiwlnllp1v4lw88k3b90tccuu7ib82qw.png)
b.
![week Number\ \ \ \ \ \ \ \ \ \ \ \ \ \ Mass(g)\\week1 => x_1=80*1.1^1=88g\\week2=>x_2=80*1.1^2=96.8g\\week3=>x_3=80*1.1^3=106.48g\\week4=>x_4=80*1.1^4=117.128g](https://img.qammunity.org/2021/formulas/mathematics/college/ibys3kle3yak7i2rzh6fa3s9ldlk32wmb4.png)
Explanation:
a. From the information provided, we can deduce that the population death's follows a Geometric sequence in the form
where
and
![r-common \ ratio](https://img.qammunity.org/2021/formulas/mathematics/college/vp29wubiysv0w0bhetnejdj1p27t6wd18t.png)
#Since the population is reducing,
can is obtained as
![r=1-r=0.94](https://img.qammunity.org/2021/formulas/mathematics/college/8evqbe92ztqd465f3wwgr3wkljyhb5hulq.png)
#The
term is obtained using the formula
, given a=1200
The number of ants alive after every month (in first 4 months)
![Month\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Pop(whole \ ant)\\month1 => x_1=80*0.94^1=1128\\month2=>x_2=1200*0.94^2=1060\\month3=>x_3=1200*0.94^3=996\\month4=>x_4=1200*0.94^4=936](https://img.qammunity.org/2021/formulas/mathematics/college/g9qiwlnllp1v4lw88k3b90tccuu7ib82qw.png)
The ant's alive after 4 months is obtained as the value of
![x_5](https://img.qammunity.org/2021/formulas/mathematics/college/su1ap8gbn74uplusum6nke9vwbr6z1iitc.png)
![x_n=ar^(^n^-^1^)\\1-x_5=1-1200* 0.94^4=936.89\\\approx 936](https://img.qammunity.org/2021/formulas/mathematics/college/qhyyy75tm305ta9jxfadwq50h3yruj7e97.png)
Hence, 936 ants are alive after 4 months.
b. As with the above question, the kitten population follows a geometric sequence:
.
#Since it's a growing population , the common ration is the sum of 100% + the growth rate,
and
and
![x_n=ar^(^n^-^1^)](https://img.qammunity.org/2021/formulas/mathematics/college/wgii2v0vnkf9z0xm6x79tg09g3rn5jd45k.png)
The population after 4weeks will be:
![week Number\ \ \ \ \ \ \ \ \ \ \ \ \ \ Mass(g)\\week1 => x_1=80*1.1^1=88g\\week2=>x_2=80*1.1^2=96.8g\\week3=>x_3=80*1.1^3=106.48g\\week4=>x_4=80*1.1^4=117.128g](https://img.qammunity.org/2021/formulas/mathematics/college/ibys3kle3yak7i2rzh6fa3s9ldlk32wmb4.png)