1.5k views
3 votes
In the coordinate plane, quadrilateral ABCD has vertices with coordinates A(1,−1), B(−5,3), C(−3,6), and D(3,2). ​ ​Part A: Compute the lengths of the sides of quadrilateral ABCD.

User Rok Povsic
by
5.6k points

1 Answer

3 votes

The lengths are AB 2
√(13) cm, BC
√(13) cm, CD 2
√(13) cm and DA
√(13) cm

Explanation:

Given,

The vertices of quadrilateral are A(1,-1), B(-5,3), C(-3,6) and D(3,2)

To find the lengths of the sides of ABCD

Formula

The length of two points (x1,y1) and (x2,y2) is
\sqrt{(x1-x2)^(2) +(y1-y2)^(2) }

So,

AB ⇒
\sqrt{(1+5)^(2) +(-1-3)^(2) } cm =
√(52) cm = 2
√(13) cm

BC ⇒
\sqrt{(-5+3)^(2)+(3-6)^(2) } cm =
√(13) cm

CD ⇒
\sqrt{(-3-3)^(2) +(6-2)^(2) } cm =
√(52) cm = 2
√(13) cm

DA ⇒
\sqrt{(3-1)^(2)+(2+1)^(2) } cm =
√(13) cm

User Paramjit
by
5.3k points