1.5k views
3 votes
In the coordinate plane, quadrilateral ABCD has vertices with coordinates A(1,−1), B(−5,3), C(−3,6), and D(3,2). ​ ​Part A: Compute the lengths of the sides of quadrilateral ABCD.

User Rok Povsic
by
8.9k points

1 Answer

3 votes

The lengths are AB 2
√(13) cm, BC
√(13) cm, CD 2
√(13) cm and DA
√(13) cm

Explanation:

Given,

The vertices of quadrilateral are A(1,-1), B(-5,3), C(-3,6) and D(3,2)

To find the lengths of the sides of ABCD

Formula

The length of two points (x1,y1) and (x2,y2) is
\sqrt{(x1-x2)^(2) +(y1-y2)^(2) }

So,

AB ⇒
\sqrt{(1+5)^(2) +(-1-3)^(2) } cm =
√(52) cm = 2
√(13) cm

BC ⇒
\sqrt{(-5+3)^(2)+(3-6)^(2) } cm =
√(13) cm

CD ⇒
\sqrt{(-3-3)^(2) +(6-2)^(2) } cm =
√(52) cm = 2
√(13) cm

DA ⇒
\sqrt{(3-1)^(2)+(2+1)^(2) } cm =
√(13) cm

User Paramjit
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories