Answer:
![\alpha=14.2rad/s^2](https://img.qammunity.org/2021/formulas/physics/college/600qmx7utl6tkvoxrh2pjunox8a29xfa4v.png)
Step-by-step explanation:
The formula that relates angular displacement with angular acceleration is:
![\Delta \theta=\omega_i t+(\alpha t^2)/(2)](https://img.qammunity.org/2021/formulas/physics/college/3t96vt3ry4zzgxw4nh222vpfbuqmchkn6b.png)
We can obtain
from the definition of angular acceleration:
![\alpha=(\Delta \omega)/(\Delta t)=(\omega_f-\omega_i)/(t)](https://img.qammunity.org/2021/formulas/physics/college/3byh8e7tv5to7d4cjy80dft0lqc971v4gt.png)
![\omega_i=\omega_f-\alpha t](https://img.qammunity.org/2021/formulas/physics/college/esckkb7lqv1twlz540ac4emtjeq2z7ihgi.png)
Putting all together:
![\Delta \theta=(\omega_f-\alpha t) t+(\alpha t^2)/(2)=\omega_f t-(\alpha t^2)/(2)](https://img.qammunity.org/2021/formulas/physics/college/sq78syvkvt9z168j9101q25gr4vh3p3wor.png)
Which, since we want the angular acceleration, is:
![\alpha=(2(\omega_f t-\Delta \theta))/(t^2)](https://img.qammunity.org/2021/formulas/physics/college/96phmzpkv165n6dt6ff3d93mozuo2ar3om.png)
And for our values is:
![\alpha=(2((97.9rad/s)(3.05s)-(37(2\pi rad))))/((3.05s)^2)=14.2rad/s^2](https://img.qammunity.org/2021/formulas/physics/college/brpyn0rlwvg0nm3umtx4o4k2kc10kjs2kl.png)