Answer:
Total Mechanical Energy of the gymnast = 1940J = 1.94 kJ
Step-by-step explanation:
Total Mechanical Energy = KE + PE + SE
Kinetic Energy,
![KE = 1/2 MV^(2)](https://img.qammunity.org/2021/formulas/physics/college/vjrfczfqjiwpevugub9mp1f6b05zpqwhdt.png)
![KE = 0.5 * 50 * 3^(2) \\KE = 225 J](https://img.qammunity.org/2021/formulas/physics/college/schsl0ycir0u0tbi392x02qod3zjdljzzz.png)
Potential Energy,
![PE = mgh\\PE = 50 * 9.8 * 3.5\\\\PE=1715 J](https://img.qammunity.org/2021/formulas/physics/college/7v7fw6p3idwkvidk4ozij9jbes2b2xcd3m.png)
Strain Energy,
![SE = 1/2 K x^(2)](https://img.qammunity.org/2021/formulas/physics/college/isqoewutxaj6qgnxfb99smot86pxjpjhew.png)
Since there is no force of deformation, x = 0, SE = 0
Total Mechanical Energy = 225 + 1715
Total Mechanical Energy of the gymnast = 1940J = 1.94 kJ