Answer:
The minimum sample size required is 1449.
Explanation:
The (1 - α) % confidence interval for population proportion is:
![CI=\hat p\pm z_(\alpha/2)\sqrt{(\hat p(1-\hat p))/(n)}](https://img.qammunity.org/2021/formulas/mathematics/college/tmoxct2846t14mxy5cxnn29860e429t5z6.png)
The margin of error in this interval is:
![MOE= z_(\alpha/2)\sqrt{(\hat p(1-\hat p))/(n)}](https://img.qammunity.org/2021/formulas/mathematics/college/iz199a04449zyo82qbtug3ef4j5w137ewr.png)
Given:
![\hat p = p = 0.38\\MOE=2.5\%\\z_(\alpha/2)=z_(0.05/2)=z_(0.025)=1.96](https://img.qammunity.org/2021/formulas/mathematics/college/b38e0fpib3vmyuzo941dma9jwrd804z2rc.png)
*Use the z-table for the critical value.
Compute the value of n as follows:
![MOE= z_(\alpha/2)\sqrt{(\hat p(1-\hat p))/(n)}\\n=(z_(\alpha/2)^(2)* \hat p(1-\hat p))/(MOE^(2))\\=(1.96^(2)*0.38*(1-0.38))/(0.0025^(2))\\=1448.129536\\\approx1449](https://img.qammunity.org/2021/formulas/mathematics/college/u9qvygnrcfpnvr7bjd2v30ob46m1adljmr.png)
Thus, the minimum sample size required is 1449.