Answer:
![\bar X = (0.14+0.15+0.16+0.17+0.18)/(5)= 0.16](https://img.qammunity.org/2021/formulas/mathematics/college/3za5pvm4axtnuu7yavzx2e7tv0nzpxko4g.png)
We can calculate the sample variance with the following formula:
![s^2 = (\sum_(i=1)^n (X_i -\bar X)^2)/(n-1)](https://img.qammunity.org/2021/formulas/mathematics/college/jgf474ogg5nmrf3tbxobq9qbe2enlpzg2c.png)
And replacing we got:
![s^2 = 0.00025](https://img.qammunity.org/2021/formulas/mathematics/college/ks6m67tbmjdcoolk6detk2461feswhfjhr.png)
And the deviation is given by this:
![s=√(0.00025)= 0.0158](https://img.qammunity.org/2021/formulas/mathematics/college/osi80amwy5qk096baqtcpzynrp2jxp2vgy.png)
If we want to find the population deviation we just need to use this formula:
![\sigma^2 = (\sum_(i=1)^n (X_i -\bar X)^2)/(n)](https://img.qammunity.org/2021/formulas/mathematics/college/4710635abqelu7fn9lrhafpvw8pofudkpy.png)
And replacing we got:
![\sigma^2 = 0.0002](https://img.qammunity.org/2021/formulas/mathematics/college/m5v4mdm3tr0q9m969f9o975lp8w2uo1u22.png)
And the population deviation would be:
![\sigma = 0.0141](https://img.qammunity.org/2021/formulas/mathematics/college/1091af7phin89qevmjejqrrwyluyklcjj2.png)
Explanation:
For this case we have the following values:
0.14, 0.15, 0.16, 0.17, 0.18.
We can calculate the mean with the following formula:
![\bar X = (\sum_(i=1)^n X_i)/(n)](https://img.qammunity.org/2021/formulas/mathematics/college/ns1mchdnk6shlvnixd6eiunff164m4m06k.png)
And replacing we got:
![\bar X = (0.14+0.15+0.16+0.17+0.18)/(5)= 0.16](https://img.qammunity.org/2021/formulas/mathematics/college/3za5pvm4axtnuu7yavzx2e7tv0nzpxko4g.png)
We can calculate the sample variance with the following formula:
![s^2 = (\sum_(i=1)^n (X_i -\bar X)^2)/(n-1)](https://img.qammunity.org/2021/formulas/mathematics/college/jgf474ogg5nmrf3tbxobq9qbe2enlpzg2c.png)
And replacing we got:
![s^2 = 0.00025](https://img.qammunity.org/2021/formulas/mathematics/college/ks6m67tbmjdcoolk6detk2461feswhfjhr.png)
And the deviation is given by this:
![s=√(0.00025)= 0.0158](https://img.qammunity.org/2021/formulas/mathematics/college/osi80amwy5qk096baqtcpzynrp2jxp2vgy.png)
If we want to find the population deviation we just need to use this formula:
![\sigma^2 = (\sum_(i=1)^n (X_i -\bar X)^2)/(n)](https://img.qammunity.org/2021/formulas/mathematics/college/4710635abqelu7fn9lrhafpvw8pofudkpy.png)
And replacing we got:
![\sigma^2 = 0.0002](https://img.qammunity.org/2021/formulas/mathematics/college/m5v4mdm3tr0q9m969f9o975lp8w2uo1u22.png)
And the population deviation would be:
![\sigma = 0.0141](https://img.qammunity.org/2021/formulas/mathematics/college/1091af7phin89qevmjejqrrwyluyklcjj2.png)