Answer:
![\mu =E(X) = 0*0.207+1*0.367+ 2*0.227+ 3*0.162+ 4*0.036+ 5*0.001= 1.456](https://img.qammunity.org/2021/formulas/mathematics/college/37namtxw34qwkrdt3ddvozwpj8pnwyouh6.png)
For the variance we need to calculate first the second moment given by:
![E(X) = \sum_(i=1)^n X^2_i P(X_i)](https://img.qammunity.org/2021/formulas/mathematics/college/a6bpyyuhoirhzs168btjvxq4bi5p4qckrj.png)
And replacing we got:
![E(X^2) = 0^2*0.207+1^2*0.367+ 2^2*0.227+ 3^2*0.162+ 4^2*0.036+ 5^2*0.001= 3.33](https://img.qammunity.org/2021/formulas/mathematics/college/xew59fpj7dhlpljojvx89kia6a9tov9gdp.png)
And the variance is given by:
![\sigma^2 = E(X^2) - [E(X)]^2 = 3.334 -[1.456]^2 =1.21](https://img.qammunity.org/2021/formulas/mathematics/college/n2bs29ykfkrvyanasgdwofu79g4ea7t20c.png)
And the deviation is:
![\sigma = √(1.214) = 1.10](https://img.qammunity.org/2021/formulas/mathematics/college/assl5c5k91jt0uckns71ty2grew0uiyrf4.png)
Explanation:
For thi case we have the following distribution given:
X 0 1 2 3 4 5
P(X) 0.207 0.367 0.227 0.162 0.036 0.001
For this case the expected value is given by:
![E(X) = \sum_(i=1)^n X_i P(X_i)](https://img.qammunity.org/2021/formulas/mathematics/high-school/seoe5h9r9il05zdhoyt8ljlel10l46kdc0.png)
And replacing we got:
![\mu =E(X) = 0*0.207+1*0.367+ 2*0.227+ 3*0.162+ 4*0.036+ 5*0.001= 1.456](https://img.qammunity.org/2021/formulas/mathematics/college/37namtxw34qwkrdt3ddvozwpj8pnwyouh6.png)
For the variance we need to calculate first the second moment given by:
![E(X) = \sum_(i=1)^n X^2_i P(X_i)](https://img.qammunity.org/2021/formulas/mathematics/college/a6bpyyuhoirhzs168btjvxq4bi5p4qckrj.png)
And replacing we got:
![E(X^2) = 0^2*0.207+1^2*0.367+ 2^2*0.227+ 3^2*0.162+ 4^2*0.036+ 5^2*0.001= 3.33](https://img.qammunity.org/2021/formulas/mathematics/college/xew59fpj7dhlpljojvx89kia6a9tov9gdp.png)
And the variance is given by:
![\sigma^2 = E(X^2) - [E(X)]^2 = 3.334 -[1.456]^2 =1.21](https://img.qammunity.org/2021/formulas/mathematics/college/n2bs29ykfkrvyanasgdwofu79g4ea7t20c.png)
And the deviation is:
![\sigma = √(1.214) = 1.10](https://img.qammunity.org/2021/formulas/mathematics/college/assl5c5k91jt0uckns71ty2grew0uiyrf4.png)