Answer:
y = -x + 5
y = x/2 + 3/2
Explanation:
First we calculate the slope as difference between coordinates
a) P₁ ( -1 , 6 ) P₂ ( 3 , 2 )
m = Δy/Δx ⇒ m = ( y₂ - y₁ ) / ( x₂ - x₁ ) ⇒ m = (2 -6 ) / (3 -(-1))
m = -4 /4
m = -1
Now we have:
y - y₁ = m ( x - x₁ ) ⇒ y - 6 = (-1) ( x - (-1))
y - 6 = -1 * ( x + 1 ) ⇒ y - 6 = - x - 1
y = -x + 5
In the second case
Q₁ ( -3 , 0 ) Q₂ ( 5 , 4 )
Again we calculate the slope
m = Δy / Δx ⇒ m = ( 4 - 0 ) / ( 5 - (-3)) ⇒ m = 4 / 8 ⇒ m = 1/2
m = 1/2 or x = 0,5
And
y - y₁ = 1/2 ( x - x₁ ) ⇒ y - y₁ = 1/2 ( x - (-3)) ⇒ y - 0 = 1/2 * x + 3/2
y = x/2 + 3/2