Answer:
-186,450
Explanation:
Sum of arithmetic series formula
![S_n=(n)/(2)[2a+(n-1)d]](https://img.qammunity.org/2023/formulas/mathematics/high-school/3xswszu9aa97ib3vxzethlaa34iy1xjgl7.png)
where:
- a is the first term
- d is the common difference between the terms
- n is the total number of terms in the sequence
![\displaystyle \sum\limits_(k=1)^(275) (-5k+12)](https://img.qammunity.org/2023/formulas/mathematics/high-school/gc0o9o2rbobmil30u2eiekd2zp3w0f91j0.png)
To find the first term, substitute
into
![(-5k+12)](https://img.qammunity.org/2023/formulas/mathematics/high-school/r77kk40yk3dpoh6p0t857ps28yz0kdiqwy.png)
![a_1=-5(1)+12=7](https://img.qammunity.org/2023/formulas/mathematics/high-school/t7ol1s3zvgt5kih4xz6tp0aqv8zql6ycgm.png)
To find the common difference, find
then subtract
from
:
![a_2=-5(2)+12=2](https://img.qammunity.org/2023/formulas/mathematics/high-school/laxovr6ln1xrx1emg6wrxuf9hl91ohwqph.png)
![\begin{aligned}d & =a_2-a_1\\ & =2-7\\ & =-5\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ytt2btkz9elsdek3yykzhjf2k6og3rkvos.png)
Given:
![\begin{aligned}S_(275) & = (275)/(2)[2(7)+(275-1)(-5)]\\& = (275)/(2)[14-1370]\\& = (275)/(2)[-1356]\\& = -186450\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nnvs2f38mbslr57sxcqt6wd6gq4v6rnnl6.png)