225k views
4 votes
Which expression is equivalent to (5g^4+5g^3-17g^2+6g)-(3g^4+6g^3-7g^2-12)/g+2

Which expression is equivalent to (5g^4+5g^3-17g^2+6g)-(3g^4+6g^3-7g^2-12)/g+2-example-1
User Yog Guru
by
5.0k points

2 Answers

2 votes

Answer:

C.

Explanation:

Which expression is equivalent to (5g^4+5g^3-17g^2+6g)-(3g^4+6g^3-7g^2-12)/g+2-example-1
User Darrell Plank
by
5.2k points
5 votes

Option C:


2 g^(3)-5 g^(2)+6

Solution:

Given expression:


$(\left(5 g^(4)+5 g^(3)-17 g^(2)+6 g\right)-\left(3 g^(4)+6 g^(3)-7 g^(2)-12\right))/(g+2)

To find which expression is equal to the given expression.


$(\left(5 g^(4)+5 g^(3)-17 g^(2)+6 g\right)-\left(3 g^(4)+6 g^(3)-7 g^(2)-12\right))/(g+2)

Expand the term
-\left(3 g^(4)+6 g^(3)-7 g^(2)-12\right):-3 g^(4)-6 g^(3)+7 g^(2)+12


$=(5 g^(4)+5 g^(3)-17 g^(2)+6 g- 3 g^(4)-6 g^(3)+7 g^(2)+12)/(g+2)

Arrange the like terms together.


$=(5 g^(4)- 3 g^(4)+5 g^(3)-6 g^(3)-17 g^(2)+7 g^(2)+6 g+12)/(g+2)


$=(2 g^(4)- g^(3)-10 g^(2)+6 g+12)/(g+2)

Factor the numerator
2 g^(4)-g^(3)-10 g^(2)+6 g+12=(g+2)\left(2 g^(3)-5 g^(2)+6\right)


$=((g+2)\left(2 g^(3)-5 g^(2)+6\right))/(g+2)

Cancel the common factor g + 2, we get


=2 g^(3)-5 g^(2)+6

Hence option C is the correct answer.

User Yeeling
by
5.4k points