Answer:
(a) The value of C is 1.
(b) In 2010, the population would be 1.07555 billions.
(c) In 2047, the population would be 1.4 billions.
Explanation:
(a) Here, the given function that shows the population(in billions) of the country in year x,
![P(x)=Ca^(x-2000)](https://img.qammunity.org/2021/formulas/mathematics/high-school/c7000143imum0bx75ex0s1910qq02tkl0g.png)
So, the population in 2000,
![P(2000)=Ca^(2000-2000)](https://img.qammunity.org/2021/formulas/mathematics/high-school/mvvunt27bjtpb0cuho05mi7occfgul79dn.png)
![=Ca^(0)](https://img.qammunity.org/2021/formulas/mathematics/high-school/q2t16zr46cxjn4jg0vo8lj2wx4tkvj2hls.png)
![=C](https://img.qammunity.org/2021/formulas/mathematics/high-school/w099jrzprzyu24iixoty7r22e519dwlx9m.png)
According to the question,
![P(2000)=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/2fl03g8g1lzr7uu1ittzaoxvw307dqtolf.png)
![\implies C=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/ie503rcrlbyaonifls7h7cqipa97rc6fjc.png)
(b) Similarly,
The population in 2025,
![P(2025)=Ca^(2025-2000)](https://img.qammunity.org/2021/formulas/mathematics/high-school/zvhp6i8b3sqmzbvk9193cywwury47vkbf5.png)
![=Ca^(25)](https://img.qammunity.org/2021/formulas/mathematics/high-school/3zjub20v20cfkz1vnhgl5egk7sjm5s9ytb.png)
(∵ C = 1)
Again according to the question,
![P(2025)=1.2](https://img.qammunity.org/2021/formulas/mathematics/high-school/madzfkmo0a2ki2i9j193gsm23cbdfko7hu.png)
![a^(25)=1.2](https://img.qammunity.org/2021/formulas/mathematics/high-school/by6ao9chg2yuns3ehuj7ayoe078mtp69gi.png)
Taking ln both sides,
![\ln a^(25)=\ln 1.2](https://img.qammunity.org/2021/formulas/mathematics/high-school/gvxz3vy6ppki87uysj3tcx11u16dsa23z1.png)
![25\ln a = \ln 1.2](https://img.qammunity.org/2021/formulas/mathematics/high-school/1gl47x9uqsz97dh331phe60507rfyn5r3i.png)
![\ln a = (\ln 1.2)/(25)\approx 0.00729](https://img.qammunity.org/2021/formulas/mathematics/high-school/p3rhegeqj7sopdpe8rc1sejxjwiu9r0eus.png)
![a=e^(0.00729)=1.00731](https://img.qammunity.org/2021/formulas/mathematics/high-school/cyhnnb7biyiim4tns34879olkuj27n4jml.png)
Thus, the function that shows the population in year x,
...... (1)
The population in 2010,
Hence, the population in 2010 would be 1.07555 billions.
(c) If population P(x) = 1.4 billion,
Then, from equation (1),
![1.4=(1.00731)^(x-2000)](https://img.qammunity.org/2021/formulas/mathematics/high-school/e9uwa5i6y9d3li6ljf6xbkdwumneea7xx3.png)
![\ln 1.4=(x-2000)\ln 1.00731](https://img.qammunity.org/2021/formulas/mathematics/high-school/y5o5cuvs91vy1a3z6cj0pk47swdq9j349o.png)
![0.33647 = (x-2000)0.00728](https://img.qammunity.org/2021/formulas/mathematics/high-school/61oejjdm91g85so3g8e8g492yk23xuk68k.png)
![0.33647 = 0.00728x-14.56682](https://img.qammunity.org/2021/formulas/mathematics/high-school/rxtntusq9y5xprp4kctuqi6lycrjfr226t.png)
![0.33647 + 14.56682 = 0.00728x](https://img.qammunity.org/2021/formulas/mathematics/high-school/7empy5v2o0ono7ltr7550j7x13t9s2jtse.png)
![14.90329 = 0.00728x](https://img.qammunity.org/2021/formulas/mathematics/high-school/s9j8nnjbmhr36shw6s55ka838xks21ebfn.png)
![\implies x=(14.90329)/(0.00728)\approx 2047](https://img.qammunity.org/2021/formulas/mathematics/high-school/qwlyi0zn9x7qu6nfv1tn2vlr0swue4k683.png)
Therefore, the country's population might reach 1.4 billion in 2047.