388,948 views
22 votes
22 votes
7(5/14a-5/21)-1/12(3a+6)

7(5/14a-5/21)-1/12(3a+6)-example-1
User Mornaner
by
2.9k points

2 Answers

18 votes
18 votes

Answer:


\boxed{(9a)/(4) - (7)/(6)}

Explanation:


7((5a)/(14) - (5)/(21) ) - ((3a + 6))/(12)

Step-1: Simplify the distributive property


(35a)/(14) - (35)/(21) - ((3a + 6))/(12)

Step-2: Make common denominators


(35a * 3)/(14 * 3) - (35 * 2)/(21 * 2) - (7 * (3a + 6))/(12 * 7)


(210a)/(84) - (140)/(84) - (7 * (3a + 6))/(84)

Step-3: Simplify the distributive property


(210a)/(84) - (140)/(84) - (21a + 42)/(84)

Step-4: Rewrite (21a + 42)/84 in a different way


(210a)/(84) - (140)/(84) - (21a)/(84) + (42)/(84)

Step-5: Add/Subtract if necessary


{(189a)/(84) - (98)/(84)}

Step-6: Simplify the fractions


{(189a)/(84) - (98)/(84)} = {(9a)/(4) - (49)/(42)} = \boxed{(9a)/(4) - (7)/(6)}

User JohnnyM
by
2.6k points
13 votes
13 votes


\sf (9a)/(4)-(13)/(6) or
\sf (54a-52)/(24)

======================================


\sf \rightarrow 7\left((5)/(14)a-(5)/(21)\right)-(1)/(12)\left(3a+6\right)

use distributive method


\sf \rightarrow (5a)/(2)-(5)/(3)-(a)/(4)-(1)/(2)

group terms


\rightarrow \sf \rigtharrow (5a)/(2)-(a)/(4)-(5)/(3)-(1)/(2)

make the denominators same


\rightarrow \sf \rigtharrow (2(5a))/(4)-(a)/(4)-(2(5))/(6)-(3(1))/(6)

simplify


\rightarrow \sf \rigtharrow (10a-a)/(4)-(10+3)/(6)

answer in separate constants


\rightarrow \sf (9a)/(4)-(13)/(6)

make the denominators same


\rightarrow \sf (6(9a))/(24)-(4(13))/(24)

simplify


\rightarrow \sf (54a)/(24)-(52)/(24)

join both fractions


\rightarrow \sf (54a-52)/(24)

User Hendrik Vlaanderen
by
2.8k points