226k views
0 votes
Two balanced dice are rolled. Let X be the sum of the two dice. Obtain the probability distribution of X (i.e. what are the possible values for X and the probability for obtaining each value?). Check that the probabilities sum to one.

1) What is the probability for obtaining X \geq 8?

2) What is the average value of X?

1 Answer

2 votes

Answer:

Explanation:

Each die has faces numbered from 1 to 6. Hence, the sums range from 2 to 12.

There are 6 × 6 = 36 possible combinations of the dice.

The sums, their possible combinations and their probabiities are as below:

2 = 1+1 1/36

3 = 1+2 = 2+1 2/36= 1/18

4 = 1+3 = 2+2 = 3+1 3/36= 1/12

5 = 1+4 = 2+3 = 3+2 = 4+1 4/36= 1/9

6 = 1+5 = 2+4 = 3+3 = 4+2 = 5+1 5/36

7 = 1+6 = 2+5 = 3+4 = 4+3 = 5+2 = 6+1 6/36= 1/6

8 = 2+6 = 3+5 = 4+4 = 5+3 = 6+2 5/36

9 = 3+6 = 4+5 = 5+4 = 6+3 4/36= 1/9

10 = 4+6 = 5+5 = 6+4 3/96= 1/12

11 = 5+6 = 6+5 2/36= 1/18

12 = 6+6 1/36

Sum of probabilities = 1/36 + 1/18 + 1/12 + 1/9 + 5/36 + 1/6 + 5/36 + 1/9 + 1/12 + 1/18 + 1/36 = 1

1)
P(X\ge 8) = 5/36+1/9+1/12+1/18+1/36=15/36

2) The average value of X = 1/36*(2+12) + 1/18*(3+11) + 1/12*(4+10)+ 1/9(5+9)+ 5/36(6+8)+ 1/6(7) = 14*(5/6)+7/6 = 77/6

User Adam Weitzman
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories